

Effluent Management Plan

Middlebrook

Middlebrook Effluent Management Plan

Agribusiness Solutions Pty Ltd PO Box 1094, Deniliquin NSW 2710 Ph: (03) 5881 5680 Fax: (03) 5881 5680 Email: brian@agbizsolutions.com.au ACN: 644 904 370 ABN: 92 644 904 370

Effluent Management Plan Prepared by

Name	Brian Crockart
Qualifications	MBA, B.Sc. Agric Economics, Registered Effluent System Designer
Position	Director/Consultant
Company	Agribusiness Solutions Pty Ltd
Address	597 Harfleur Street, PO Box 1094, Deniliquin NSW 2710
Phone	0427 129 004

In respect of development application for

Middlebrook Barn Development
Peter, Jane & Sam Middlebrook
Sam Middlebrook
Owner/Operations Manager
796 Maxwells Road, Finley , NSW 2710
0427 440
Peter Middlebrook
Owner
0428 959 273
Intensive Livestock Agriculture – 750 dairy cows (restricted) including the construction of 1 compost barn (600 cows) and effluent ponds. 150 cows to remain on dry lot through summer with grazing from April to November.
70/-/DP752297
While every reasonable effort has been made to ensure that this document is correct at the time of printing, Agribusiness Solutions and its employees make no representation, undertake no duty and accept no responsibility to any third parties who use or rely upon this document, or the information contained in it

Table of Contents

Tab	le of C	ontents	3
List	of Tab	les	5
Tab	le of Fi	gures	5
List	of Maj	DS	5
1.	State	ment of intention	6
2.	Farm	Overview	6
3.	Curre	nt Effluent System	7
3	.1	Contribution to the effluent Stream	7
3	.2	Fresh Water Use	8
3	.3	Runoff	8
3	.4	Current effluent System Design	8
3	.5	Current Effluent System Capacity.	9
٧	Vinter	storage period required	9
1	23 day	s (1 st May to 31 st Augus)	9
S	torage	requirement	9
6	.5 ML (Rainfall, runoff, water use and urine)	9
Т	otal ca	pacity required	9
9	.95ML	(includes freeboard and residual sludge)	9
E	ffectiv	e storage available	9
1	0.18 N	IL	9
Т	otal po	nd capacity	9
1	3.63M	L (includes freeboard)	9
3	.6	Water Availability and Use	9
4.	Clima	te Data	
4	.1	Current pond sizing – Anaerobic Pond & Storage Pond 1	
	4.1.1	Anaerobic Pond	
	4.1.1	Storage Pond 1	
5.	Propo	osed Effluent System	
5	.1	Effluent System	
5	.2	Flood Wash System	
5	.3	Sedimentation Basins	
5	.4	Operation and Maintenance	
5	.5	Overflow to Storage Pond	
Mid	dlebro	ok Effluent Management Plan	October 24

5.6	i	Storage pond	14
5.7	,	Water Balance and pond sizing	15
5.8		Manure Solids	17
6. 9	Soil (Geotechnical Assessment	18
7. 1	Nutri	ient Management	18
7.1		Soil Assessment	18
7.2		Nutrient Budgeting	18
7.3		Nutrients in Manure	18
7.4	Ļ	Crop Nutrient Requirements	20
7.5	i	Nutrient Distribution	20
7.6	i	Conclusion	21
8. 9	Salin	ity Management	21
8.1		Soil and Effluent Salinity	22
8.2		Conclusion	23
8.3	1	Sodium Hazard (High SAR)	23
8.4	Ļ	Sustainable Reuse	24
9. (Cont	ingency measures	24
9.1		Pond wall breach/Overflow	24
9.2		Pump failure	24
9.3		Emergency disposal of milk	25
9.4	Ļ	Effluent discharge to waterway	25
9.5	i	Significant storm event	25
9.6	i	Significant odour emissions from pond	25
10.	N	laintenance Schedules	25
10.	.1	Pond management	26
10.	.2	Pump maintenance	26
10.	.3	Conveyance pipes	26
10.	.4	Irrigation systems	26
10.	.5	Slurry and solid spreaders	26
11.	D	airy Effluent Maintenance Checklist	27
11.	.1	Pond management	27
12.	Sa	afety	27
12.	.1	Safe ponds	27
12.	.2	Recommended management practices	27
12.	.3	Safe operation of the system	27
13.	R	eferences	28

14.	Appendix	28
14.1	Appendix A – Soil Geotechnical Assessment	28
14.2	Appendix B – Soil Test Results	28

List of Tables

Table 1 - Summary of Water Use	8
Table 2 - Effluent Storage Capacity	9
Table 3 - Water Availability	9
Table 4 - Cropping Program water use	9
Table 5 - Total Annual Water Use Summary	10
Table 6 – Climate Data	10
Table 7 - Sedimentation Basin Capacity (per basin)	
Table 8 – Winter Storage Period, Rainfall and Evaporation tables	
Table 9 - Manure and Nutrient Budget	
Table 10 - Nutrient Summary	19
Table 11 – Cropping Program	20
Table 12 - Crop Nutrient Removal Rates	20
Table 13 - Minimum Area Required for Reuse of Nutrients	21
Table 14 - Contribution of salt to the effluent stream	
Table 15 - Estimated dSm of Effluent Water	22
Table 16 - Salt Load in Irrigation Water	22
Table 17 - Salinity of diluted irrigation and effluent water	22
Table 18 - Soil Salinity factors	23
Table 19 - General irrigation water salinity ratings based on electrical conductivity	
Table 20 - Sodium Hazard	

Table of Figures

Figure 1 - E	Effluent System Schematic 13	,
Figure 2 – P	Pond Sizing Diagram	'

List of Maps

Map 1 - Current Facility	/ infrastructure	8

1. Statement of intention

This Effluent Management Plan outlines the design parameters of the proposed dairy effluent system and its capacity to handle the effluent and dairy water from a 600 Cow Compost Barn. 150 cows to remain on dry lot through summer with grazing from April to November (Total 750 cows).

The property is Located at 796 Maxwells Road, NSW 2710, within the Berrigan Shire Council.

Proposed development

- Compost barn to house 600 cows.
- 3 sedimentation basins.
- 1 storage pond.

Objective

- Improved cow comfort and productivity.
- Long term sustainability and economic viability.

Modelling Assumptions & Future development

Future development plans have been considered when developing the effluent management plan, hence all calculations in this Effluent Management Plan are based on 750 cows.

Related Documents

This document should be read in conjunction with the Statement of Environmental Effects (SEE) as it provides context for the Effluent Management Plan.

Statutory Requirements

This effluent management plan aims to enable the on-farm effluent system to be managed effectively, meeting the nutrient management needs of both the farm and the environment. It ensures compliance with water quality protection requirements as governed by the Protection of the Environment Operations Act 1997 (POEO Act), which provides the statutory framework for managing water pollution in NSW.

Reference Documents

Calculations used to develop the recommendations in this report have been based on recommendations and modelling from:

- Effluent and Manure Management Database for the Australian Dairy Industry, 2008.
- Effluent Tool Kit 11.7, DPI Victoria, 2018.

2. Farm Overview

The dairy has been operating as a dairy farm for the past 30 years, and Peter & Jane Middlebrook operated a dairy on the property since 2002. They currently milk 500 cows in a dry lot, with some grazing. The aim is to move 600 cows into a compost barn where cow comfort is significantly improved and management of manure, effluent and odour is also improved. The existing dry lots will be used for sick cows and heifers with the herd size increasing to a total of 750 milking cows.

Property and farm management details Summary		
Herd capacity	Current - 500 cows	
Describe current infrastructure & management	50-unit Rotary dairy Grazing cows through autumn, winter and spring with cows in dry lot pens during summer	
Fresh water use	Current water use – 39,900 litres/day	
Cow production	≈ 8,000 litres per cow (annual milk)	
Herd breed and average cow weight	Holstein herd 600kg average	
Calving pattern	Daily calving pattern	
Type of farming system	Current - Animal Production – grazing with drylot through summer months.	
Type of development contemplating	Compost Barn to house 600 cows	
Additional infrastructure (current proposal)	600 cow compost barn, 3 Sedimentation basins and storage.	
Effluent application area	Currently 242 ha, via flood irrigation	
Odour risks	Low, existing dairy enterprise. Compost barn is drier and less odourous than drylot	
Impact on current effluent system	No impact as it will have a separate effluent system that allows for recycling of effluent water for flood wash and irrigation.	
Native vegetation removal	None	
Nearest neighbouring from development	1,246m NNE of proposed storage pond	
Nearest neighbour from current facility	1,326m NNE of old dry lot	
Nearest road network	379m Larkins Road	
Nearest property boundary	370m	
Nearest waterway	645m Myrtle Park Drain	
Topography of site	Flat	
General comments: Upgrading facilities to improve cow comfort, productivity and reduce odour		

3. Current Effluent System

3.1 Contribution to the effluent Stream

A critical factor in determining the required size of effluent system components is the volume of water and manure entering the system. The main sources of water entering the current effluent system include cleaning of the dairy facility, rainfall runoff from yard surfaces, and rainfall on pond surfaces. Rainfall from the dairy roof is collected in a water tank, while rainfall from the yards flows into the anaerobic pond. Rainfall and runoff from the dry lot are directed to the drainage recycling system. The cows also generate both manure and urine, which contribute to the effluent system

3.2 Fresh Water Use

The table below summarises the freshwater requirements of the dairy facility

Table 1 - Summary of Water Use

Vat rinsing	1,350
Plant rinse	2,250
Pit area 7 platform hosing	10,500
Cup spray wetting	12,500
Platform wetting (during milking)	12,500
Teat wash	500
Yard Flood wash (recycled water)	0
Plate cooler (recycled water)	0
Total daily water use (fresh water only)	39,900

3.3 Runoff

Runoff from the dairy roof is directed to rainwater tanks alongside the dairy. Runoff from the dairy yard is directed to the Storage Ponds. The total catchment area of the dairy yards is calculated at 1,144m².

3.4 Current effluent System Design

The current effluent system consists of two effluent ponds that are connected to the drainage recycling system, allowing for the reuse of runoff and effluent. Water drains from the dairy and yards into the anaerobic pond, which overflows into storage pond 1. A pump located on the storage pond fills the flood wash tank at the dairy. Runoff from the dry lot roof and yards is directed to the recycling system.

The image below illustrates the current facility and effluent system. The storage pond is connected to the irrigation system, where recycled effluent water is used for crop irrigation. It is designed to store four months' worth of effluent during the winter storage period and can handle runoff from the 90th percentile rainfall from the dairy and yards.

Map 1 - Current Facility infrastructure

Middlebrook Effluent Management Plan

3.5 Current Effluent System Capacity.

The effluent system servicing the dairy and yards was designed to handle wet years. For this reason, the 90th percentile rainfall and 10th percentile (adjusted) evapotranspiration were used to calculate the pond sizes.

The winter storage period is defined as the time when 90th percentile rainfall exceeds 10th percentile evaporation. In this case, the period spans four months, from the start of May to the end of August. Since the majority of stored water on the farm is used for autumn irrigation in March and April, as well as the first irrigation in September, the storage period for 90th percentile rainfall is assumed to be the 123 days between May and August.

The table below summarizes the current effluent system capacity, which has been calculated to be fit for purpose.

Winter storage period required	123 days (1 st May to 31 st Augus)	
Storage requirement	6.5 ML (Rainfall, runoff, water use and urine)	
Total capacity required	9.95ML (includes freeboard and residual sludge)	
Effective storage available	10.18 ML	
Total pond capacity	13.63ML (includes freeboard)	

Table 2 - Effluent Storage Capacity

3.6 Water Availability and Use

Stock and domestic water for facility cleaning and livestock drinking is sourced from the MIL channel system and stock and domestic bores.

Water quality from the MIL channel system (EC 350 or 0.35 dSm⁻¹) is suitable for both stock consumption and irrigation. Salinity in the stock and domestic bore is .85 dSm. There are no adverse impacts on dairy livestock when water salinity is less than 3,900 EC units (3.9 dSm⁻¹).

The tables below summarise water licensing & availability, water use in the dairy and irrigation water use for crop production. See Appendix A for bore water analysis.

Table 3 - Water Availability

Water Class	Volume (ML)
MIL Water entitlement	1,621
Stock & domestic shallow bore	182
Total	1,803

Table 4 - Cropping Program water use

	Area	Yield	Yield	Water Use	Total Water	
Сгор	(Ha)	(T DM/Ha)	(T DM)	(ML/Ha)	(ML)	T DM/ML
Maize	90	20	1,800	7	630	2.9
Pasture Grazing/Silage	242	7	3,091	4	968	3.2
Lucerne hay	81	13	1,053	8	648	1.6
Wheat for Grain/Silage	245	6	1,470	1.5	368	4.0
Total Area cropped	658		7,413	4.0	2,613	2.8

Middlebrook Effluent Management Plan

October 24

Table 5 - Total Annual Water Use Summary

Water Use	ML
Facility Water	14.6
Drinking Water	41.1
Irrigation Water	2,613
Total Requirement	2,669
Temporary Requirement	1,048

Note: water requirements will be met by purchasing water on the temporary market or adjusting the cropping program based on seasonal conditions.

4. Climate Data

Finley, located in the southern Riverina region of New South Wales, experiences a temperate climate characterized by hot summers and mild winters. Here's a summary of its climate data:

- **Rainfall**: Finley is in a low-rainfall zone, with an average annual rainfall of around 400-500 mm. Rainfall is relatively evenly distributed throughout the year, but there is a slight peak in late winter and spring.
- Temperature:
 - Summer (December to February): Hot, with daytime temperatures often exceeding 30°C.
 Maximum temperatures can sometimes reach 40°C or higher during heatwaves.
 - Winter (June to August): Mild, with average daytime temperatures around 13-15°C. Nights can be cold, with minimum temperatures occasionally dropping below freezing.
- **Evaporation**: High, particularly in the warmer months, where evaporation rates typically exceed rainfall. This is especially notable in the summer, when evaporation significantly surpasses precipitation.
- **Humidity**: Relatively low, especially in summer, contributing to the dry, arid conditions during the hotter months.
- **Wind**: The region experiences moderate winds, which can increase evaporation rates and exacerbate the dryness in summer.

Climate Data	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Avg
Avg Max													
Temp (°C)	32.6	31.5	28.4	23.4	18.2	14.8	14.3	16.7	20.6	24.8	28.3	31	23.6
Avg Min													
Temp (°C)	16.8	16.5	13.8	9.9	6.1	3.4	2.7	4.1	6.8	9.8	12.8	15.2	9.8
Avg Rainfall													
(mm)	29.3	34.5	30.5	24.2	29.4	36.3	33.8	33.0	33.5	37.2	41.5	30.7	394
Avg													
Evaporation	276	215	176	100	55	36	39	59	95	151	199	256	1657
Avg Humidity													
(%)	45	47	50	60	70	80	85	75	65	55	50	45	61.7
Avg Sunshine													
Hours	320	290	270	220	180	160	160	190	230	270	290	310	244.2
Avg Wind													
Speed (km/h)	15	14	15	14	12	12	13	14	16	17	16	15	14.3

Table 6 – Climate Data

(Source: BOM, 2024)

4.1 Current pond sizing – Anaerobic Pond & Storage Pond 1

4.1.1 Anaerobic Pond

The capacity of the Anaerobic Pond near the dairy is 8.77 megalitres. This pond will hold the majority of sludge and solids from the dairy and yards. The Anaerobic Pond overflows to the storage pond.

Middlebrook Effluent Management Plan

October 24

4.1.1 Storage Pond 1.

Excess effluent from the Anaerobic Pond flows to the storage pond. Based on the water use in the dairy, runoff from yards and rainfall on the pond surfaces, the total storage capacity required for the dairy and surrounds is 9.95 megalitres. The current total capacity of the ponds is 13.63 megalitres

Middlebrook Effluent Management Plan

October 24

5. Proposed Effluent System

5.1 Effluent System

The diagram below represents a schematic of the new effluent system, which will be largely separate from the current system. If the effluent water for the flush system runs low, water will be pumped into the Storage Dam (1) from the recycle drain for use in the flood wash at the dairy and barn.

Effluent from the barn and dry lot will flow into the new system, which consists of 3 sedimentation basins and a storage pond. The number of sedimentation basins will be determined by the earthen fill requirements of the new facility. Rainfall from the barn roof will be diverted to the recycle drain and will not enter the sediment basin and storage pond.

Effluent from the cow alleys in the barn and the dry lot feed pad will be directed to the sedimentation basins, where solid manure will separate from the liquid effluent. The effluent will transfer from the sedimentation basins to Storage Pond B. Effluent pumped from Storage Pond B will be used to flood wash the cow alley and will also be transferred to the irrigation recycle sump for crop irrigation purposes.

Figure 1 - Effluent System Schematic

5.2 Flood Wash System

The flood wash system in the barn is designed to carry effluent and solid waste from the cow alley to a sump at the end of the barn, from where it is piped to the sedimentation ponds. A similar sump will be positioned at the bottom of the dry lot cow alley. To achieve this outcome, the slope of the alley needs to be a minimum of 1%, and the flow depth must be at least 50 mm. Given the length of the alley (200 m) and the width of the alley (4 m), the Dairy Flood Wash calculator (Skerman, 2008) requires a minimum flush volume for one-third alley length contact time of 18,092 litres and a contact time of 66 seconds.

Picture 1 - Cow Alley Flush System

5.3 Sedimentation Basins

Solid/liquid separation is a necessary process to avoid excessive buildup in the storage pond, as sludge is difficult to remove from large ponds. Sedimentation basins are typically designed to drain completely so that the material removed during clean-out can be handled as a solid. Three sedimentation basins, with provisions to divert flows to one while the others dry, provide the opportunity to maximize the solids content of the material removed. The basins are long and shallow to allow easy access for excavators and are spaced at a minimum of 15 meters apart to facilitate traffic between them.

Table 7 - Sedimentation Basin Capacity (per basin)

5.4 Operation and Maintenance

- Each basin will develop a thick, dry surface crust that will act as a biofilter to reduce odour emissions.
- The triple pond arrangement allows one basin to dry out while the other is in use. The solids are
 removed using an excavator and are suitable for immediate spreading with a conventional manure
 spreader.
- Concrete structures will be built to enable the diversion of effluent between the ponds.

5.5 Overflow to Storage Pond

The sedimentation basins will have concrete overflow structures or pipes that divert effluent to the storage pond and retain the solids in the basin. Effluent will gravity feed from the sedimentation basins to Storage Pond 2(slope 0.5%).

5.6 Storage pond

The effluent from the sedimentation basins will drain into the storage pond for reuse in the flushing system and the irrigation system. The effluent storage pond is calculated based on facility water use and the 90th percentile rainfall contributions over a specified winter storage period. This period typically occurs when rainfall exceeds evaporation. In this case, the winter storage period is 123 days, covering the months of May, June, July, and August.

From time to time, fresh water may need to be added to the storage pond to dilute the effluent and

Middlebrook Effluent Management Plan

October 24

reduce odours. The pond will also require desludging periodically, as sludge will separate from the liquid component of the effluent and settle on the pond floor. This will be accomplished by agitating the sludge to allow it to be suspended in the liquid phase and pumped into a tanker for spreading. Note that the storage pond has been oversized to provide fill for the barn development and to allow for future expansion of the dairy operation.

5.7 Water Balance and pond sizing

The tables below show the water balance and weather data used to calculate the required winter storage period. The winter storage period refers to the time of year when no effluent can be used for irrigation, and the ponds must store all effluent during this period. The winter storage period is calculated to be four months.

Given that the flood wash water is recycled from the storage ponds, one could argue that the pond requirements are overestimated. However, the storage ponds will also receive runoff from the dry lot and act as a buffer to ensure that flood wash effluent is always available. The storage capacity will also allow for the use of fresh water from time to time to dilute the effluent.

Table 8 – Winter Storage Period, Rainfall and Evaporation tables

Climate location chosen: Finley	
---------------------------------	--

Locality for K value: 2710 Deniliquin -35.22 145.03

K= 0.73

	1	2	3	4	5	6	7	8	9	10	11	12	13	
Climate data		Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual (sum of months)
Precipitation	MR ⁹⁰ _{adj} (mm)	40	55	45	35	42	45	46	42	39	49	55	46	541
E _{pan}	ME ¹⁰ _{adj} (mm)	245	190	149	82	47	32	35	51	81	128	184	230	1,456
K _{pan}		0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	
EΤ _o	ET _o ¹⁰ _{adj} (mm)	196	152	119	66	38	25	28	41	65	103	147	184	1,165
K _c	Temperate perrennial pasture	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	
ET _c	ET _c ¹⁰ _{ad} j (mm)	206	160	125	69	40	27	30	43	68	108	154	193	1,223
Deficit	mm	166	105	80	34	-2	-18	-16	1	29	59	99	147	719
Recommended Storage	months	Ν	N	Ν	N	Y	Y	Y	Y	N	Ν	Ν	Ν	4
Recommended Storage	e days	0	0	0	0	31	30	31	31	0	0	0	0	123
Storage period chose	n													
Storage months		Ν	N	Ν	Ν	Y	Y	Y	Y	Ν	Ν	Ν	Ν	4
Storage days		0	0	0	0	31	30	31	31	0	0	0	0	123
Rainfall during storage	period	0	0	0	0	42	45	46	42	0	0	0	0	175
Evap during storage per	riod	0	0	0	0	47	32	35	51	0	0	0	0	165

Mean Rainfall & Evap for application calculations

Climate location chosen: Finle	y Localit	y for K value: 2710 Deniliquir	-35.22 145.03	K=	0.73

														Annual (sum
Climate data		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	of months)
Precipitation	mean (mm)	29	35	31	24	29	36	34	33	33	37	42	31	394
E _{pan}	mean (mm)	276	215	176	100	55	36	39	59	95	151	199	256	1,657
K _{pan}		0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	
ETo	mean (mm)	221	172	141	80	44	29	31	48	76	121	159	204	1,326
K _c	Temperate perrennial pastur	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	
ET _c	mean (mm)	232	180	148	84	46	30	33	50	80	127	167	215	1,392
Deficit	mm	203	146	117	60	17	-6	-1	17	47	90	126	184	1,006
mean rainfall during stor	age period	0	0	0	0	29	36	34	33	0	0	0	0	132
mean evap during storage	je period	0	0	0	0	55	36	39	59	0	0	0	0	190

Middlebrook Effluent Management Plan

Figure 2 – Pond Sizing Diagram

Operation and Maintenance

- Prior to autumn the level of the storage pond will dropped to ensure winter storage capacity of 123 days is easily achieved.
- The pond will be designed to allow for the freeboard portion of the pond to be above ground forming a turkey nest, which will prevent runoff from the surrounding cropping area entering the storage pond.

5.8 Manure Solids

Solids removed from the sedimentation basin will be loaded directly into a manure spreader and spread onto paddocks. This will be done at a time that minimises odour and reduces the risk of runoff. Dry lots will also have manure scraped from the surfaces at regular intervals. Once again, this is usually loaded directly into the manure spreader for distribution on paddocks.

The compost barn will have wood chips to a depth of 600mm. The shed will contain 4,080 cubic meters of woodchips at start up and each cow will have 11.3 square meters of loafing area on the bedding material. Cows will spend approximately 58% of their time lying down on the bedding and 58% of the manure and urine will be assigned to the bedded pack. The bedded pack is groomed twice daily to aerate and dry the pack and promote composting. Fans within the shed are positioned to encourage drying and composting. Due to the composting process, cleaning intervals are extended to 2 to 3 years, where composted material is removed from the shed and new material is added (wood chips). For nutrient budget calculation purposes it is assumed that 20% of the composted material is removed each year.

6. Soil Geotechnical Assessment

A soil geotechnical assessment of the pond sites was conducted by GTS (Geotechnical Testing Services). Based on the findings of the report, the proposed sediment basins and effluent storage pond sites are suitable for the intended purpose, however, to meet the EPA permeability requirements of less than 1×10^{-9} the ponds will need to be clay lined with a minimum liner thickness of 400mmm as per the geotechnical report recommendations.

7. Nutrient Management

Using undiluted dairy effluent as an irrigation water source will quickly lead to nutrient overloading. It is best applied based on nutrient levels. Effluent can be used shandled into irrigation water to supplement water supply and spread nutrient where it will be of most benefit.

Effluent and manure application will be integrated into the fertiliser program for the farm. Areas where effluent and manure have been applied will have their nutrient status checked and the nutrient budget adjusted on a regular basis to determine the need for fertilisers. Effluent application will be rotated around the available area and a record will be kept in the farms Environmental Management Plans.

7.1 Soil Assessment

A detailed soil description can be viewed in the Soil Geotechnical Assessment in the Appendix. Detailed Soil nutrient tests can be found in the appendix.

7.2 Nutrient Budgeting

Sustainable reuse of the nutrients from an intensive livestock operation protects the soils physical, chemical and biological properties. The protection of surface and groundwater is also dependent on careful management of those nutrients. Sustainable reuse is dependent upon the following factors;

- That the total amount of nutrients generated by the animals fed does not exceed the total agronomic requirements of the crops grown. That is, the balance of nutrients does not impact upon the capacity of the soil to assimilate nutrients over the long term.
- That the salt and sodium applied in manure and effluent does not lead to long term degradation of the soil's physical and chemical properties.

7.3 Nutrients in Manure

The table below has been developed from Nennich's (2005) manure production formulas. A total of 2,226 tonnes of solid manure will be produced. The nutrient contained within this manure will be apportioned to the solid manure in the bedding material, solids from the sedimentation basins and effluent water and sludge remaining in the storage ponds. A portion of the solids will decompose, and a large portion of the nitrogen will be volatilized as it moves through the effluent system. The balance of the nutrients will be available for distribution on the cropping land. It is assumed that 20% of the composted bedding material is removed each year for distribution on paddocks. Note these calculations include effluent and solid waste from both the original effluent system and the new effluent system.

Table 9 - Manure and Nutrient Budget

1. Daily Excretion Data	TS	VS	FS	N	Р	к
(Nennich, 2005)	8.1	6.8	1.4	0.428	0.073	0.197
	_					
2. Dry Pack Barn & Dairy Yard						
Manure Deposited (kg/yr)	2,226,847	1,848,283	378,564	117,105	19,997	53,902
Total Solids Partitioned to Dairy Effluent System	371,141	308,047	63,094	19,517	3,333	8,984
Total Solids Partitioned to Barn Bedding/Dry lot loafing	1,298,994	1,078,165	220,829	68,311	11,665	31,443
Total Solids and Nutrient Partitioned to Barn Flushing	556,712	462,071	94,641	29,276	4,999	13,476
3. Nutrients depsoited on dry pack						
Nutirents deposited in bedding	1,298,994	1,078,165	220,829	68,311	11,665	31,443
Decomposition and Loss	50%	60%		80%		
Nurtrients in compost bedding	649,497	431,266	220,829	13,662	11,665	31,443
3. Nutrients Entering Effluent System						1
Nutirents deposited on flush lanes/dairy yards	556,712	462,071	94,641	29,276	4,999	13,476
Loss of N on concrete yards & flush lanes				7%		
Nurtrients in Effluent to Ponds	556,712	462,071	94,641	27,305	4,999	13,476
3. Nutrients Removed in Pre-treatment	F09/	F <i>C</i> 9/	620/	250/	700/	E0/
Nutrient & solid removal by pre-treatment (%)	229/0	25070	02%	25%	70%	5%
Nutrients & solids removal by sedimentation basin	528,400	258,700	56,077	0,820	5,500	074
4 Nutrients & Solids to Pond						
Total Nutrients and solids to pond	228.252	203.311	35.964	20.479	1.500	12.802
Pond decomposition rate of solids & N volatilization rate	33%	80%	100%	30%	0%	0%
Losses/decomposition	75.323	162.649	35.964	6.144	0	0
Total Nutrient Available in pond	152.929	40.662	0	14.335	1.500	12.802
Nutrients partitioned to pond sludge (%)		-,	-	20%	30%	10%
5. Summary						
Total nutrient generated (kg/year)	2,226,847	1,848,283	378,564	117,105	19,997	53,902
Less Losses & decomposition (Kgs/year)	1,095,961	1,117,595	157,735	82,281	3,333	8,984
Nutrient contained in bedded pack manure	649,497	431,266	220,829	13,662	11,665	31,443
Nutrient available in bedding for distribution (20%)	129,899	86,253	44,166	2,732	2,333	6,289
Remaining in pre-treatment waste - sediment basin (kg/y	328,460	258,760		6,826	3,500	674
Nutrient contained in sludge on cleanout (Kgs)	152,929	40,662		2,867	450	1,280
Nutrient retained in liquid effluent (Kgs/year)				11,468	1,050	11,522
Total Nutrients Available for Reuse (Kgs/year)	1,260,785			23,894	7,332	19,764

Table 10 - Nutrient Summary

Nutrient	N	Р	К
Total Nutrient Collected (kgs)	117,105	19,997	53,902
Nutrient Available for distribution			
Nutrient in Effluent	11,468	1,050	11,522
Nutrient in Solid Waste	12,426	6,282	8,243
Total Nutrient Available for Distribution	23,894	7,332	19,764

7.4 Crop Nutrient Requirements

The nutrient requirements of the farm are driven by the agronomic program implemented on the property. The farm is 724 hectares in size, with 85% of the land being arable and 75% irrigable. Of the irrigable area, 242 hectares can be serviced by recycled effluent water.

A portion of the property will be double-cropped with maize in the summer and annual pasture in the winter for the production of silage. The remainder of the farming area will grow a combination of lucerne, winter cereals for grain and silage, and annual pastures for grazing and silage. This program is adjusted annually based on water availability and market prices.

	Area	Yield	Yield	Water Use	Total Water	
Сгор	(Ha)	(T DM/Ha)	(T DM)	(ML/Ha)	(ML)	T DM/ML
Maize	90	20	1,800	7	630	2.9
Pasture Grazing/Silage	242	7	3,091	4	968	3.2
Lucerne hay	81	13	1,053	8	648	1.6
Wheat for Grain/Silage	245	6	1,470	1.5	368	4.0
Total Area cropped	658		7,413	4.0	2,613	2.8

Table 11 – Cropping Program

Note: Maize doubled cropped on pasture area.

Table 12 - Crop Nutrient Removal Rates

		Nutrient	Removal (Kgs/Ha)	Total Nutrient Removal (Kgs)				
Сгор	Area (Ha)	Yield (TDM/Ha)	Yield (T DM)	N	Р	к	Total N	Total P	Total K
Maize	90	20	1,800	340	60	300	30,600	5,400	27,000
Pasture Grazing/Silage	242	7	1,694	210	35	175	50,820	8,470	42,350
Lucerne hay	81	13	1,053	455	91	351	36,842	7,368	28,421
Wheat for Grain/Silage	245	6	1,470	150	24	75	36,750	5,880	18,375
			Total Nut	rient Remo	ved/Requ	uired	155,012	27,118	116,146
			Nutrient I	Iutrient Removal (Kgs/Ha)				41	177

The table above shows that the nutrient requirements of the cropping program are 236 kgs Nitrogen per hectare, 41kgs Phosphorus per hectare and 177kgs Potassium per hectare.

7.5 Nutrient Distribution

Where significant amounts of nutrients are collected in dairy effluent, it is beneficial and more environmentally benevolent to spread these nutrients over areas that require nutrient increase based on soil test results and crop nutrient requirements. In this case, liquid effluent can be irrigated through the irrigation system. The ability to distribute the effluent via the on-farm channel system is limited to an area on the dairy farm of 242 hectares. The solid manure and pond sludge can be spread over the remaining property consisting of 374 hectares. Table 13 - Minimum Area Required for Reuse of Nutrients

Area Available for Effluent (Ha)	242		
Area Available for Manure Solids (Ha)	374		
Area	N	Р	К
Minimum area required for effluent (Ha)	49	4	49
Minimum area required for solids (Ha)	40	20	26
Total Area required	88	24	75

7.6 Conclusion

The Nutrient budget shows that a total area of 88 hectares is required to distribute the effluent and manure. The area available for distribution of effluent is 242 hectares and the area available for distribution of manure solids is 374 hectares. There is sufficient area to distribute manure and effluent to avoid any adverse impacts to the land.

8. Salinity Management

Salts will be added to the property through water used for irrigation, dairy equipment wash and stock consumption, and from imported feed rations. The relative contributions suggest that irrigation water is the most significant source of salts.

Salt from feed, stock water and dairy wash will end up in the effluent stream. The effluent will then be diluted with the irrigation water and applied to crops. Assuming 85% of the salt from the feed and drinking water enters the effluent stream, a total of 53 tonnes of salt will be added to the effluent stream from feed, drinking water and wash water. The balance will be distributed as manure.

Feed	
Dry matter Intake (kgs)	24.2
Salt content (%)	0.23%
Salt Excreted (t per year)	18.6
Drinking Water	
Consumption (Litres/cow/day)	150
Salt Excreted (t per year)	10
Dairy Wash & cooling water	
Water use (ML/year)	15
EC dairy water (mg/L)	236
Salt in wash water (t/year)	3
Total Salt From Feed & Water (t/year)	32
Salt Entering effluent Stream (85%)	26.9

Table 14 - Contribution of salt to the effluent stream

Assumes dairy wash consists of rainfall runoff & bore water. 85% of salt excreted enters the effluent stream (27 t/year). With an estimated average waste-water generation of 40 kl/d, and the contribution of salt to the system from feed and urine, the EC of the effluent from the anaerobic pond is estimated to be approximately 1.52 dSm.

Table 15 - Estimated dSm of Effluent Water

Water, urine and runoff (L/day)	75,884
Total salt entering system (kgs/yr))	26,908
Salt per day (kgs)	74
mg/l	972
Estimated dSm of effluent water	1.52

The table below shows the estimated amount of salt added to the property via irrigation water.

Table 16 - Salt Load in Irrigation Water

Volume Irrigated (MI on reuse area)	1,598]			
Area (Ha)	242				
MI/Ha	6.6				
Salinity Irrigation Source	ML	mg/l	dS/m	kgs/ML	Kgs/year
MIL Channel Water (excluding effluent)	1,562	192	0.30	192	300,180

Salt applied to the cropping area in irrigation water is approximately 300 t/year. These salts will reduce crop yield if they accumulate in the rooting depth to damaging concentrations.

Table 17 - Salinity of diluted irrigation and effluent water

0.3
1.52
36
1,562
0.02
0.98
0.33
6.6
366
0.05
0.23

8.1 Soil and Effluent Salinity

The effluent water has high salinity levels as well as a high Sodium Adsorption Ratio. For this reason, the effluent needs to be managed in a manner that reduces the risk of soil salinity and soil structural problems. Table 19. shows the soil related salinity factors for 4 soil test samples taken recently on the property. The tests show that the salinity levels are very low in the soil with soil extracted (se) Electrical Conductivity (dS/m) levels ranging from 0.25 to 0.68.

It is recommended that soil testing be carried out on a bi-annual basis to monitor the impact of saline effluent water on the soils. It is also recommended that effluent is always shadied with MIL channel water to dilute the effects of salt. The results below suggest that the soils are showing very little sign of salinity (EC) or sodicity (SAR). See Appendix C for detailed soil test results.

Table 18 - Soil Salinity factors

			Abott La	Abelard	Bernies
Paddock	Unit	Tree Line	1-7	St 4-9	Pdk 1-10
Electrical conductivity (1:5 water)	dS/m	0.11	0.04	0.07	0.04
Electrical conductivity (se))	dS/m	0.68	0.25	0.43	0.25
Cation Exchange Capacity	cmol/kg	16.6	9.5	15.8	14.6
Chloride	mg/kg	<10	<10	12	<10
Calcium	cmol/kg	8.8	5.8	8.8	8.2
Mangesium	cmol/kg	5.8	2.6	5.1	4.7
Sodium	cmol/kg	0.31	0.27	0.27	0.15
Exchangeable Sodium %	%	1.9	1.9	1.7	1
Sodium Adsorption Ratio (SAR) *		0.11	0.13	0.10	0.06
* SAR = Exchangeable {(Na)/(Ca + Mg) ^{-0.5} }					

Table 18 shows that the average irrigation water, effluent and rainfall salinity is 0.23 dSm which is considered low.

Table 19 - General irrigation water salinity ratings based on electrical conductivity

EC (dS/m)	Water salinity rating	Plant suitability
<0.65	Very low	Sensitive crops
0.65-1.3	Low	Moderately sensitive crops
1.3-2.9	Medium	Moderately tolerant crops
2.9-5.2	High	Tolerant crops
5.2-8.1	Very high	Very tolerant crops
>8.1	Extreme	Generally, too saline

(Source: Use of Effluent by Irrigation, 2003)

8.2 Conclusion

The average salinity of blended irrigation water, effluent water and rainfall is estimated to be 0.23 dSm-1. Using the salinity ratings in table 20, it can be concluded that the water salinity rating is very low and would not impact crop production.

8.3 Sodium Hazard (High SAR)

High sodium ions in water affects the permeability of soil and causes infiltration problems. This is because sodium when present in the soil in exchangeable form replaces calcium and magnesium adsorbed on the soil clays and causes dispersion of soil particles (i.e. if calcium and magnesium are the predominant cations adsorbed on the soil exchange complex, the soil tends to be easily cultivated and has a permeable & granular structure). This dispersion results in breakdown of soil aggregates. The soil becomes hard and compact when dry and reduces infiltration rates of water and air into the soil affecting its structure.

Table	20 -	Sodium	Hazard

Hazard	SAR	Notes
None	<3	No restriction on the use of recycled water
Slight to moderate	3 to 9	From 3 to 6 care should be taken to sensitive crops. From 6 to 8 gypsum should be used. Not sensitive crops. Soils should be sampled and tested every 1 or 2 years to determine whether the water is causing a sodium increase
Acute	>9	Severe damage. Unsuitable for irrigation

(Source: Lenntech, 2020) Middlebrook Effluent Management Plan It is likely that the effluent water will have high SAR levels, and should always be diluted with MIL water, and management practices implemented to monitor and manage the reuse of effluent.

8.4 Sustainable Reuse

Based on the nutrient budget and the salinity calculations it is deduced that effluent and manure can be managed in a sustainable manner, and will not have a detrimental impact on soils, surface water and ground water. Soil monitoring should be performed bi-annually, and effluent water should always be diluted with MIL channel water. The following management strategies are recommended.

- Soil test every 2 years.
- Record the distribution and volume of effluent to the reuse area.
- Use the soil tests as the basis for the application of gypsum and lime to ameliorate the soil.
- Apply the required leaching fraction to ensure there is no build up in salinity levels in the root zone and that yields are not compromised over the long term.
- Use of effluent water on paddocks P1-8 on Pineview should be avoided.

9. Contingency measures

All effluent systems have a risk of failure. The most common cause of system failure is lack of management. Maintain management schedules and ensure regular management occurs. Refer to the Environment Management Plan for details on effluent system management and monitoring.

Contingency plans outline procedures for when unexpected events occur such as machinery breakdowns, power failures and disease outbreaks. Contingency plans and procedures for emergency breakdowns are essential. Contingency plans should consider: flooding, milk disposal, power disruptions, pump breakdowns, pond overflows, breaches and pump and pipeline blockages. The following are potential risks associated with the effluent management system.

9.1 Pond wall breach/Overflow

Contingency plan

- Construct a temporary levy bank to contain the spill.
- Install a temporary spoon drains to direct uncontrolled overflows and seepage to the irrigation recycle system (F in figure 2) and the storage pond (D in figure 2).
- Empty the pond to the point where the walls can be safely reconstructed by directing effluent to the irrigation recycle system and the turkey nest dam.
- Repair walls and banks by removing topsoil and vegetative growth before reconstructing the area with more clay or other impermeable material.

9.2 Pump failure

Contingency plan

- Maintain a current list of local trades people that can repair the pump and have this accessible to all staff in the Environmental Management Plan.
- Access a temporary pump if repair or replacement will take more than 2 days.
- Establish a contingency storage area within proximity, which has bunding or levy banks to contain

Middlebrook Effluent Management Plan

October 24

the effluent until pump repairs are completed.

• Minimise facility water use (without compromising milk quality) to reduce wash down volumes entering the effluent stream.

9.3 Emergency disposal of milk

Contingency plan

- Drain the milk into the irrigation sump and recycle the water into the irrigation channel for irrigation. Ensure that it will not have an impact on the environment and community amenity.
- Schedule an irrigation event to dilute the milk (1:10) and return to appropriate paddocks.
- Store some for calf rearing.
- Note: Milk should not be disposed of into the effluent stream as it will have adverse impacts on the pond performance and cause odour.
- •

9.4 Effluent discharge to waterway

Effluent is unable to leave the farm and is contained within the farm drainage system.

9.5 Significant storm event

Contingency plan

- Offload a proportion of the pond into the irrigation sump.
- Fill the flood wash tanks with fresh water if capacity in the fresh-water storage pond is limited.

9.6 Significant odour emissions from pond

Contingency plan

- Minimise spreading and irrigation of effluent on windy warm days.
- Avoid infrequent shock loadings of effluent to the pond.
- Monitor the pH within the primary effluent pond. The pH should be slightly alkaline. The addition of hydrated lime to acidic ponds can improve both pH and odour.
- Products for reducing odour or improving anaerobic digestion may be added to the ponds.
- Plant trees and shrubs between neighbouring residences. These can cause a disturbance in the wind pattern, forcing odour to rise upwards and away from sensitive areas.
- Remove manure stockpiles from sensitive areas more frequently.
- Avoid irrigation methods that lead to surface pooling.

10. Maintenance Schedules

Effluent systems are only effective when well managed and maintained. Effective management involves regular maintenance of system infrastructure, regularly utilising effluent on pastures and crops to achieve productivity gains and avoiding effluent application in unsuitable weather or soil conditions.

Middlebrook Effluent Management Plan

An ongoing maintenance and monitoring program is important for assessing potential problems and enabling them to be rectified before they eventuate. Refer to the Environmental Management Plan for a full maintenance schedule. A maintenance program should include the following key components:

10.1 Pond management

Ponds are designed for a specific function and therefore need to be maintained periodically to ensure they continue to function. Accumulating solids and nutrients overtime may begin to impact on pond performance, hence the reason for a sound maintenance schedule.

Key indicators of ponds underperforming may include:

- Heavy surface crusting and silting
- Odour emissions
- Excessive weed growth
- Dark brown discoloration

10.2 Pump maintenance

Almost all effluent systems require some type of pump to convey effluent either from the dairy to the pond or the pond to the irrigation system. Pump failure on the sump can easily lead to effluent backing up into dairy and surrounding area. Use only a qualified electrician to install all electrical requirements such as wiring, switches etc.

10.3 Conveyance pipes

The conveyance of effluent from the compost barns to the sedimentation basins is an essential part of the effluent system. Inadequate management will cause unnecessary blockages and pipe damage.

Fixing blockages in conveyance pipes is a tedious and time consuming job that can be avoided by regular cleaning of the sump at the end of the cow alley in the barn. Occasional flushing with clean water can help with maintaining clear flow and minimising bends in the pipe will help to avoid blockages.

10.4 Irrigation systems

The method in which effluent is conveyed and applied to pastures and crops is a vital component of any effluent system and therefore requires regular monitoring and maintenance.

10.5 Slurry and solid spreaders

Farm safety and accident prevention should be the highest priority on the farm, ensuring the farm surrounds are as safe as possible, for workers, children, visitors, livestock and pets. The management of effluent also requires the regular use of a range of equipment and machinery, which requires operator training and regular maintenance programs. Operators should be aware of the weather conditions to avoid unnecessary odour to local amenities.

11. Dairy Effluent Maintenance Checklist

The following is a checklist to assist with a regular maintenance program on the farm.

11.1 Pond management

- Annually review the pond effective storage to ensure it has sufficient capacity for the wetter months.
- Inspect pond banks for signs of cracking or deterioration and instigate repairs.
- Inspect pond surroundings for wet areas which may indicate pond seepage.
- Sample and analyse the pond effluent on an bi-annual basis to determine levels of nutrients, salts and organic content before land application. Use this information to match with soil nutrient profiles and fertility targets.
- Develop a schedule to empty the pond prior to the onset of the wetter months (June, July & August).
- De-sludge the pond on an annual basis to remove solids and nutrients in conjunction with the nutrient management plan.
- Annually check ponds outlet pipes for seepage and replace damaged rubber seals.
- Check fencing around ponds is adequately tensioned and secured.
- Spray weeds to keep the pond banks clean so that inspection is safe and easy.

Effluent systems can be hazardous places, and safety must always be considered when building and working around them.

12.1 Safe ponds

The objective of occupational health and safety is to provide a safe working environment and appropriate training for all staff, visitors and service providers.

12.2 Recommended management practices

- Identify and address potential risks and hazards associated with effluent systems and their management.
- Regularly maintain equipment.
- Implement training programs for staff, contractors and visitors to inform them of potential dangers

Good compaction is required for pond stability. Other important features include a gentle batter slope on both internal and external pond walls and wide pond banks to form a stable platform for machinery access. The pond should be machinery accessible on all sides if possible and designed to reduce the possibility of machinery slipping into the ponds. Ponds should be fenced, and weeds controlled regularly. Signage cautioning deep water, slippage and gases should be erected.

12.3 Safe operation of the system

- Never work alone around effluent systems.
- Ensure machinery around ponds is secured and in full working order.

- Restrict access to ponds to when it is required.
- Erect appropriate signage at the pond.
- Ensure staff and contractors are trained and understand safe working practices.
- Use long extension poles to collect effluent samples for nutrient analysis.

13. References

- Dairy Australia, 2008, "Effluent and Manure Management Database for the Australian Dairy Industry".
- Department of Environment and Primary Industries 2009, Ag Note AG 0444, "Safe Effluent Systems".
- Department of Environment and Primary Industries 2009, Ag Note AG 1374, "Maintenance schedules and contingency planning".
- Department of Environment and Conservation 2003, *"Environmental Guidelines, use of effluent by irrigation"*, Website: <u>www.environment.nsw.gov.au</u>
- Department of Planning and Environment, NSW 2019, "Planning Guidelines Intensive Livestock Agriculture Development".
- Department of Primary Industries, Victoria 2018, "Effluent Tool Kit 11.7".
- Intensive Agriculture Consultative Committee 2008, *"Environmental management guidelines for the dairy industry"*, State of New South Wales through NSW Department of Primary Industries
- Lenntech, 2020, SAR Hazard of Irrigation, viewed June 20, <u>https://www.lenntech.com/applications/irrigation/sar/sar-hazard-of-irrigation-</u> water.htm#ixzz6Q9CwCvie
- McDonald, S. 2005, "Water use in dairy sheds", Dept. of Primary Industries, Melbourne.
- Nennich, et al, 2005, "Prediction of manure and nutrient excretion from dairy cattle", Journal of Dairy Science.
- NSW Dairy Effluent Subcommittee 1999, "Draft NSW guidelines for dairy effluent resource management", NSW Agriculture, Orange.
- Skerman, 2008, Department of Primary Industries & Fisheries, QLD 2008, "Dairy Flood Wash".

14. Appendix

- 14.1 Appendix A Soil Geotechnical Assessment
- 14.2 Appendix B Soil Test Results

Middlebrook Maxwells Road, Finley

Geotechnical Investigation for Rhys Tremble Concreting and Engineering

> Report 24C 0720 October 2024

Middlebrook, Maxwells Road Finley

Geotechnical Investigation

for **Rhys Tremble Concreting and Engineering**

Revision

Revision	Date	Authorised
24C 0720	4/10/2024	SEH

Distribution (this revision only)

Recipient	Format	Date
GTS	On file	4/10/2024
Rhys Tremble Concreting and Engineering Attn: Rhys Tremble	Email PDF rhystrembleag@hotmail.com	4/10/2024

Head Office / Mail

13 Alstonvale Court,

East Bendigo VIC 3550

Phone 03 5441 4881

Bendigo Laboratory 13 Alstonvale Court, East Bendigo VIC 3550 Phone 03 5441 4881

GEOTECHNICAL | ENVIRONMENTAL | CONSTRUCTION MATERIALS TESTING

Echuca Laboratory Shed 3, 140 Ogilvie Ave, Echuca VIC 3565 Phone 03 5480 0601

Ballarat Laboratory Unit 6, 33 Laidlaw Dr, Delacombe VIC 3356 Phone 03 5335 6494

TABLE OF CONTENTS

1 INTRODUCTION	4
2 SITE AND GEOLOGY	4
2.1 SITE LOCATION AND GENERAL CONDITIONS	4
2.2 GEOLOGY	4
3 FIELDWORK	4
4 RESULTS	5
4.1 FIELD RESULTS – SOIL PROFILES	5
4.2 LABORATORY TEST RESULTS	5
5 ENGINEERING RECOMMENDATIONS	6
5.1 SHALLOW FOOTINGS	7
5.2 BORED PIERS	7
5.3 SITE CLASSIFICATION AND SLAB ON GROUND	7
5.4 EARTHWORKS	8
5.5 PONDS	9
6 IMPORTANT NOTES ABOUT THIS REPORT	10
7 DISCLAIMER	11

APPENDIX

Borehole Locations Engineering Logs Laboratory Test Reports Descriptive Terms

1 INTRODUCTION

Rhys Tremble Concreting and Engineering commissioned Geotechnical Testing Services (GTS) to undertake a geotechnical investigation for the development at Middlebrook at corner of Larkins Road and Maxwells Road, Finley.

The purpose of the investigation was to assess general subsurface conditions at the site with a view to providing comments and design parameters for the proposed development.

It is understood that the development includes new sheds and sediment/effluent ponds.

2 SITE AND GEOLOGY

2.1 SITE LOCATION AND GENERAL CONDITIONS

The site is located at corner of Larkins Road and Maxwells Road, Finley.

The site is relatively flat with the proposed development areas currently vacant of structures. There is 1 large tree in the vicinity of the shed development. At the time of the investigation, the surface of the site was moist and consisted of a good coverage of natural and seeded grass. There was no visual evidence of surface cracking or natural surface rock.

2.2 GEOLOGY

The New South Wales Government's online "MinView" map shows the site to be underlain by Tertiary aged sedimentary alluvial deposits, with this generally confirmed by the field data.

3 FIELDWORK

The geotechnical investigation was conducted on the 20th and 21st of October 2024 and involved the drilling of 16 boreholes (BH) by Drillman GT10 drilling rig to termination depths of 3.0 metres. In-situ strength tests including Dynamic Cone Penetrometer (DCP) and Pocket Penetrometer (PP) tests were conducted within each of the boreholes with the results included on the engineering logs. In addition, samples of material were obtained for further laboratory analysis.

The field investigation was conducted by a technician under the direction of a Geotechnical Engineer, who logged the subsurface profile. The engineering logs are included in the Appendix with their locations shown on the enclosed site plan. Boreholes 1 to 8 were located in the region of the shed with BHs 9 to 16 in the region of the ponds.

4 RESULTS

4.1 FIELD RESULTS – SOIL PROFILES

The field investigation indicated that the soil profile is relatively uniform across the site below the existing fill and may be summarised as follows:

TOPSOIL: Sandy SILT, low plasticity, dark brown, fine to medium sand, soft to stiff. To a depth of between 0.1 to 0.15 metres *Overlying* (Sandy) Silty CLAY, medium/high plasticity, brown, pale brown, orange/brown, fine to coarse sand when present, firm to very stiff. To a depth of between 1.7 to 3.0 metres *Overlying* Clayey SAND, fine to coarse sand, pale brown, orange/brown, low/high plasticity fines, medium dense to dense. To termination depths (BHs 8 to 14 and 16 only)

There are variations to the above including Clayey Silt at 0.8 to 1.3m material in BH9. As such, reference should be made to the appended engineering logs for a full description of subsurface conditions at each location.

Groundwater inflow was not encountered over the investigated depths; however, wet material was encountered at depths below 2.7 metres in the region of BHs 10 to 14 and 16.

4.2 LABORATORY TEST RESULTS

Samples retained from the investigation were submitted to the GTS Bendigo laboratory and an external laboratory at the completion of the field investigation. The testing consisted of Atterberg Limits, Emerson Class, Particle Size Distribution and Permeability with the results summarised in the following table with full NATA accredited reports in the Appendix.

Table 1: Material Properties

Test Location	BH1 0.5-1.0m	BH5 2.5-3.0m	BH9 0.7-1.2m	BH9 1.3-1.8m
% Passing 19mm Sieve	100	100	100	100
% Passing 2.36mm Sieve	99	99	99	99
% Passing 0.075mm Sieve	69	81	81	71
Liquid Limit (%)	43	61	23	41
Plastic Limit (%)	16	19	18	16
Plasticity Index (%)	27	42	5	25
Linear Shrinkage (%)	12.0	12.5	1.5	11.0
Emerson Class	5	4	4	4

Table 1 Continued: Material Properties

Test Location	BH11 0.6-1.1m	BH14 0.6-1.2m	BH15 0.1-0.7m	BH16 2.0-2.5m	
% Passing 19mm Sieve	100	100	100	100	
% Passing 2.36mm Sieve	100	100	99	100	
% Passing 0.075mm Sieve	49	85	82	32	
Liquid Limit (%)	24	46	53	54	
Plastic Limit (%)	16	18	21	20	
Plasticity Index (%)	8	28	32	34	
Linear Shrinkage (%)	5.0	11.5	13.5	14.5	
Emerson Class	5	5	4	5	

Table 2: Permeability

Test Location	BH9 1.3-1.8m	BH14 0.6-1.2m	
Permeability (m/s)	1x10 ⁻¹⁰	6x10 ⁻¹⁰	

5 ENGINEERING RECOMMENDATIONS

At this stage, the proposed development consists of the construction of sheds and effluent ponds. As such, there may be slab on ground, shallow footings and/or deep footings (bored piers). Design parameters for the various founding options are included in the following sections.

5.1 SHALLOW FOOTINGS

Based on the results of this investigation, it is recommended that the founding material and minimum depth below existing surface level for shallow footings should be as follows:

• (Sandy) Silty CLAY, medium/high plasticity, brown, pale brown, orange/brown, fine to coarse sand when present, firm to very stiff.

Table 3: Minimum founding depth (m)

Borehole	1	2	3	4	5	6	7	8
Depth (m)	0.1	0.2	0.1	0.1	0.1	0.1	0.4	0.1

For edge beams, strips and pad footings founded in the natural silty clay material as above there is an allowable bearing pressure of 50kPa available, increasing to 100kPa below 0.7 metres. All footings shall be founded a minimum of 100mm into the above founding medium. Blinding concrete (minimum 15MPa strength) may be used to bring footings up to design levels.

Alternate to the above, a raised building pad for the shed may be required. If the building pad is constructed under Level 1 supervision (discussed in Section 5.4), the footings may be located within the engineered fill.

5.2 BORED PIERS

Due to the variable strength of the upper subsurface, bored piers may be preferred. Bored piers shall be founded minimum of 1.0 metres below surface level and may be proportioned for an allowable end bearing pressure of 150kPa. Piers founded a minimum of 1.5 metres below surface level may be proportioned for an allowable end bearing pressure of 200kPa. There is an allowable skin friction of 15kPa commencing from 1.0 metres below surface level.

5.3 SITE CLASSIFICATION AND SLAB ON GROUND

In as far as a site classification in accordance with AS2870-2011 is applicable to a development of this type, the site is classified as **Class P**, due to the proximity of a tree which may cause abnormal moisture conditions across the site. The reactivity of the material across the site would typically lead to a Class H1-D.

If the sheds are located a minimum distance of 1x the mature height of singular trees or 1.5x the mature height of lines/groups of trees, it may be designed in accordance with a Class H1-D. If not, the trees height, distance and grouping must be considered when designing the foundation.

In regards to slab on ground, the upper subsurface is of variable strength but the Silty Clay material below the topsoil layer is generally suitable for slab on ground construction with an allowable bearing pressure of 50kPa. However, there is notable soft material in the region of BH7 and with the variable strength it is recommended that a Geotechnical Engineer inspect the exposed base to ensure it is of suitable material type and strength. This may involve a proof roll with a fully laden dump/water truck with tyre pressures in excess of 400kPa (60psi).

5.4 EARTHWORKS

If a building pad for the shed is required, there are 2 options. The first is to place fill and compact with no geotechnical supervision or testing. If this is undertaken, all footings are to extend through the fill into the material as recommended in Sections 5.1 or 5.2. The second option is for the fill to be placed and compacted under Level 1 supervision as outlined in AS3798-2007. If this is undertaken, the footings may then be located in the controlled/engineered fill with an expected allowable bearing capacity of 100kPa. For engineered fill, it is recommended that the following method be undertaken:

- Excavate any topsoil/silt material in the vegetative zone (approximately 100mm to 150mm in depth) and stockpiled separately.
- The exposed base is to be inspected by an experienced Geotechnician or Geotechnical Engineer and proof rolled with a fully laden dump/water truck, 12 tonne roller or similar vehicle. A successful proof roll is where there is no visible/significant deformation or heaving of the surface. Areas that fail the proof roll may be moisture conditioned and recompacted until satisfactory or excavated and replaced with suitably compacted material.
- Suitable site won material may then be placed in loose layers no greater than 200mm, moisture conditioned to within 2% OMC and compacted with a vibrating pad foot roller to achieve a minimum density ratio of 98% standard (AS1289 5.1.1, 5.4.1 or 5.7.1).
- The compacted thickness of each layer shall not exceed 150mm and also be appropriate to the size of the compaction equipment in order for satisfactory compaction to be achieved. In between layers, the surface should be finished with a pad foot roller or tined a depth of 50mm so that the subsequent layer may bind.
- Compaction testing at the frequency outlined in Table 8.1 of AS3798-2007 is to be conducted to ensure a minimum density ratio of 98% Standard has been achieved.
- Once a design surface level has been achieved, the finished surface shall be finished with a smooth drum roller or grader to achieve finished surface levels and satisfactory drainage of the site.
- The excavated topsoil may be placed on the embankments to assist vegetation and minimise erosion.
Suitable material consists of site won clays and clayey sands from the pond excavations.

5.5 PONDS

It is understood that the proposed development includes the construction of a new sediment/effluent ponds that are expected to extend a minimum of 3 metres deep below existing surface levels. As per EPA requirements a permeability rate of less than $1x10^{-9}$ m/s for the pond base and walls is required.

Based on the results of the investigation and laboratory testing, the material at the site is relatively consistent with medium and high plasticity sandy silty clays in the upper profile that transitions to a low/high plasticity clayey sand below 1.7 metres.

Based on the remoulded permeability testing of BH9 and BH14 of the medium plasticity clays, when compacted to 95% Standard Dry Density (SDD) ratio, a permeability rate of 1×10^{-10} and 6×10^{-10} respectively is achieved. Additionally, the medium and high plasticity silty clay material is generally non-dispersive with an Emerson Class of 4 and 5. This material is considered satisfactory as a base and embankments of the proposed effluent pond. However, the Clayey Sand material at depth along with the Clayey Silt encountered in BH9 and 11 in the upper profile is not suitable for the base/walls of embankments, as such, a clay liner will be required for this material.

For construction of the ponds, it is expected to be excavated a minimum of 3 metres below existing surface level. Therefore, the following earthworks procedure shall be undertaken to achieve a clay lined pond:

- Excavate any topsoil/silt material in the vegetative zone (approximately 100mm to 150mm in depth) and stockpiled separately.
- The pond should be excavated to design levels, accounting for a minimum clay liner thickness of 400mm over the base and pond walls below 1.5 metres and where Clayey Silt is encountered. It is recommended that the base and walls be inspected by a Geotechnical Engineer to ensure it is suitable.
- The material in the upper 1.5 metres shall be blended together before placement of the clay liner. The medium and high plasticity (Sandy) Silty Clay from the upper 1.5 metres should be stockpiled separately to the Clayey Sand material that is below this layer.
- All batters should not exceed a 3:1 (H:V) slope.
- For the pond walls from surface to 1.5m metres, they should be ripped a depth of 300mm, moisture conditioned to within 2% of optimum moisture content (OMC) and compacted to achieve a minimum density ratio of 98% standard (AS1289 5.1.1, 5.4.1 or 5.7.1)

- For the pond walls below 1.5m and the base, a clay liner is required. Prior to placing the clay liner, the exposed base/walls shall be compacted with a pad foot roller to create a rough surface to bind the liner material. Suitable site won material (clay from the top 1.5 metres and deemed satisfactory by a Geotechnical Engineer) may then be placed in loose layers no greater than 200mm, moisture conditioned to within 2% OMC and compacted with a vibrating pad foot roller to achieve a minimum density ratio of 98% standard.
- The compacted thickness of each layer shall not exceed 150mm and also be appropriate to the size of the compaction equipment in order for satisfactory compaction to be achieved. In between layers, the surface should be finished with a pad foot roller or tyned a depth of 50mm so that the subsequent layer may bind.
- Once a minimum thickness of 300mm has been achieved, the finished surface shall be finished with a smooth drum roller or grader to achieve finished surface levels and satisfactory drainage of the site.

On completion of the construction, the topsoil material may be spread over the banks to aid in revegetation and prevent erosion. For areas subject to wave motion of filling points, it is recommended that beaching rock or concrete apron be placed to prevent erosion of the soil from the movement of water.

Additional permeability testing may be required in the base of the constructed clay liner to ensure a permeability rate of 1x10⁻⁹ has been achieved during construction to meet EPA requirements.

It is expected that excavation at the site will be readily achieved using conventional heavy earthmoving machinery to the required design levels in the sandy/silty clay and clayey sand profile.

If the Sandy/Silty Clay material is exposed during construction, should it become wet, it will be slippery and difficult to traffic. As such, crushed rock will be required in trafficked areas to ensure access remains available. Alternatively, during dry weathered, this material will dust up on the surface under traffic, therefore, dust controls measures such as water truck or crushed rock surfacing will be required.

6 IMPORTANT NOTES ABOUT THIS REPORT

The results from this investigation relate to the specified sites labelled throughout this document, and hence the information obtained may need to be extrapolated to the rest of the designated area. While care has been taken throughout this investigation, soil conditions can vary between each individual test site and at depths greater than that drilled during this investigation. Hence, if variations from this report are found during excavations/construction then Geotechnical Testing Services should be notified so it can be assessed and appropriate advice provided.

The soil colours provided in the borelogs attached may vary with soil moisture content and individual interpretation, therefore colour alone should not be used to identify these soils.

Strength characteristics of soils often exhibit a large variation between wet and dry conditions. Soil characteristics of a soil profile are given on the soil conditions at the time of the investigation.

7 DISCLAIMER

This investigation has been carried out in goodwill and under the instructions of Rhys Tremble Concreting and Engineering. The investigation has been undertaken with the care and skill of competent personnel as defined within Geotechnical Testing Services quality system. It is not a comprehensive investigation but a guide to the conditions throughout the designated area.

This document has been prepared for Rhys Tremble Concreting and Engineering and hence no responsibility or liability is being accepted to any third party, where any part of the report is used in either isolation or without consideration of the whole document. This document is not appropriate where there has been a significant change in the project or either for the specific needs of the reader.

Please, don't hesitate to contact the undersigned, if you require any further information or assistance.

Prepared by

Corey Palmer BE (Hons) GradlEAust Graduate Geotechnical Engineer

Reviewed by

Hampto

Shane Hampton BE (Hons), MIEAust Principal Geotechnical Engineer

APPENDIX

GEOTECHNICAL INVESTIGATION APPROXIMATE LOCATIONS NOT TO SCALE

 CLIENT:
 RHYS TREMBLE
 GTS REF

 PROJECT:
 CORNER LARKINS AND
 CLIENT

 MAXWELLS ROAD, FINLEY, NSW
 DRAWN

 DATE: 0

GTS REF: 24C 0720 CLIENT REF: DRAWN BY: VC DATE: 03 SEPTEMBER 2024

13 Alstonvale Court East Bendigo VIC 3550 Phone: 03 5441 4881

Geotechnical Log - Borehole

UTM		:			Drill Rig	: Drillman GT10 - Landcruiser Mount	Job	Numb	er :24	C 0720				
Eastin	g (m)	: 0.00			Driller Supplier	:	Clie	ent	: Rh	ys Tremble	9			
Northi	ng (m) d Elou	: 0.00	hou		Logged By	: PR	Proj	ject	: Pro	oposed Sh	eds and Pond	ls www.lla. Rood		
Total E	o Eleva Depth	: 3 m BGL	iyeu		Date	: 19/08/2024	LOC	Comm	ent:	rner Larkii	IS ROAU & WA	xwells Road,	Finley NSW	
												Testing		
		-	g	Code					6	ý				
ter	h (m	Drigii	ic Lo	tion		Material Description		sture	nerin	stend	DCP	PD (kPa)	SPT	Pomarke
Wa	Dept	Soil C	raph	sifica		Material Description		Mois	Veath	onsi	DCF	FF (KFd)	361	Rellarks
		07	G	class					~	Ö				
		TOPSOIL	<u></u>	MI				м		Ct				
	0.1	TOFSOIL			Sandy SILT ML	.: stiff, low plasticity, dark brown, fine to	0	IVI		51				
		Natural	//	CI			-1	М		St				
					Silly CLAY CI:	d sand moist								
	-													
											3			
	0.4_										5			
		Natural		CI	Sandy to silty C	CLAY CI: firm to stiff, medium plasticity	',	м		F-St	3			
	-				grey, fine to coa	arse grained sand, moist.					2			
											3			
											1			
	-										2			
											3			
											4			
	-													
											6			
	-													
	1./	Natural	1	CI-C	Silty CLAY CL	CH: very stiff medium to high plasticity	, †	м		VSt				
				Н	pale brown mot	ttled grev brown, trace fine sized grave	,, el.							
					moist.		,							
												600+		
						BH 1 Terminated at 3m								

13 Alstonvale Court East Bendigo VIC 3550 Phone: 03 5441 4881

Geotechnical Log - Borehole

UTM Eastin	g (m)	: : 0.00			Drill Rig Driller Supplier	: Drillman GT10 - Landcruiser M :	Nount	Job Numb Client	er : 24 : Rh	C 0720 Iys Trembl	e			
Northi	ng (m)	: 0.00			Logged By	: PR		Project	: Pro	oposed Sh	eds and Pone	is		
Groun	d Eleva	ation : Not Surve	eyed		Reviewed By	:		Location	: Co	rner Larki	ns Road & Ma	xwells Road,	Finley NSW	
Total I	epth	: 3 m BGL			Date	: 19/08/2024		Loc Comm	nent :					
Water	Depth (m)	Soil Origin	Graphic Log	assification Code		Material Description		Moisture	Weathering	Consistency	DCP	PP (kPa)	SPT	Remarks
		TOPSOIL		0 ML	Sandy SILT ML	.: stiff, low plasticity, dar	k brown, fine to	М		St				
0	.15 _	Natural		CI	Silty CLAY CI:	firm to stiff, medium pla	sticity, brown,	M		F-St				
	-				trace fine to me	edium grained sand, mo	ist.							
0	.35 _	Natural	/	CI-C H	Silty CLAY CI-0	CH: firm to stiff, medium	to high plasticity	, M		F-St	2			
	-		/		S ,		_,				2			
											1			
	-										3			
											4			
	_										5			
	- - 1.8_	Natural		CI-C	Silty CLAY CI-	CH: verv stiff. medium to) hiah plasticity.	м		VSt				
				Н	pale brown mo gravel, trace fir	ttled orange brown, trac ne to coarse grained sar	e fine sized nd, moist.							
	-											400		
						on 2 reminated at 3m								

13 Alstonvale Court East Bendigo VIC 3550 Phone: 03 5441 4881 **Geotechnical Log - Borehole**

υтм		:			Drill Rig	: Drillman GT10 - Landeruie	er Mount	Job Numh	er · 24	C 0720				
Eastin	g (m)	: 0.00			Driller Supplier	: Srinman GTTV - Lanucfuls		Client	:Rh	ys Tremble	e			
Northi	ng (m)	: 0.00			Logged By	: PR	1	Project	: Pr	oposed Sh	eds and Pon	ls		
Groun	d Eleva	ation : Not Surve	eyed		Reviewed By	:	I	Location	: Co	orner Larkin	ns Road & Ma	xwells Road	Finley NSW	
Total E	epth	: 3 m BGL			Date	: 19/08/2024	I	Loc Comn	nent:					
Water	Depth (m)	Soll Origin	Graphic Log	Classification Code		Material Description		Moisture	Weathering	Consistency	DCP	Testing PP (kPa)	SPT	Remarks
	0.1	TOPSOIL	····	ML	Sandy SILT ML	: stiff, low plasticity, d	lark brown, fine to	М		St				
	-	Natural		CI	Sandy CLAY Cl grey, fine to coa gravel, moist.	l: firm, medium plasti arse grained sand, tra	city, brown mottled ace fine sized	M		F				
											2			
	-										2			
	0.6_	Natural		CI-C H	Silty CLAY CI-C	CH: firm to stiff, mediu	um to high plasticity,	M		F-St	2			
	-				sand, moist.		neulum graineu				2			
											3			
	_										5			
	- - 1.6_													
	-	Natural		Н	Silty CLAY CI-C brown mottled (sized gravel, tra	CH: very stiff, medium grey orange brown, tr ace fine to coarse gra	n to high plasticity, race fine to medium ained sand, moist.	M		VSt				
	-											600+		
						BH 3 Terminated at 3m								

13 Alstonvale Court East Bendigo VIC 3550 Phone: 03 5441 4881

Geotechnical Log - Borehole

UTM		:			Drill Rig	: Drillman GT10 - Landcruiser Mount	J	Job Numb	er :24	IC 0720				
Eastir	ng (m)	: 0.00			Driller Supplier	:	c	Client	: R	hys Tremble	Ð			
North	ina (m)	· 0 00			Logged By	PR	F	Project	·P	onosed Sh	eds and Pon	ds		
Grour	d Flov	ation : Not Surve	wod		Reviewed By			ocation	· C	ornor Larki	e Road & Ma	avwelle Road	Finley NSW	
Tatal		auon. Not Sulve	yeu		Reviewed by	-					IS RUAU & WIA	axwells Roau,	, Filley NOW	
Iotal	Deptn	: 3 M BGL			Date	: 19/08/2024	L		ient :					
				de								Testing		
	Ê	. <u>e</u>	og	S				0	БĽ	cy				
ter	u) H	Drig	ic	tior		Material Description		sture	Jerii	ster	DCP	PR (kPa)	SDT	Bomarko
Wa	le pt	oil O	aph	fica		Material Description		Nois	eath	usia	DCP	PP (KPa)	571	Remarks
		٥	Ģ	assi				-	>	ပိ				
				ö										
		TOPSOIL	<u></u>	ML	Sandy SILT MI	· stiff low plasticity dark brown fi	no to	м		St				
	01					suii, iow plasuolty, uark biowii, iii								
		Natural		СН	^{medium} graine	u sanu, moist.		Лм		F				
					Silty CLAY CH:	firm, high plasticity, brown, trace f	fine to							
					medium graine	d sand, moist.								
	F													
												1		
	0.4										2			
		Natural		CI-C	Silty CLAY CI-C	CH: firm to stiff, medium to high pla	asticity.	м		F-St		1		
				н	dark brown mo	ttled brown trace fine sized gravel	l trace				1			
					fine to coarse o	rained sand moist	, 1400				0			
						framed sand, moist.					2			
											4	1		
											4			
	-										3			
											6			
											8			
	-										9			
												-		
	1.2_							_						
	-	Natural		CI	Sandy CLAY C	I: very stiff, medium plasticity, pale	brown	M-D		VSt				
			\square		mottled grey or	ange brown, fine to medium graine	ed							
					sand, moist to	dry.								
			$\langle \rangle \rangle$											
	-													
			$\langle \rangle$											
			\square											
	-													
			$\langle \rangle \rangle$											
	F		\square									600+		
			$\langle \rangle$											
	F		\square											
			\square											
			$\langle \rangle \rangle$											
			///											
	[
	2.6_		///						L	L				
		Natural		CI	As above, but t	race fine to coarse sized gravel.		M-D		VSt				
						C C								
	μI													
			11			pri 4 ierminated at 3m				1				

13 Alstonvale Court East Bendigo VIC 3550 Phone: 03 5441 4881

Geotechnical Log - Borehole

UTM		:			Drill Rig : Dr	rillman GT10 - Landcruiser Mount	Job I	Numbe	er :24	C 0720				
Eastin	g (m)	: 0.00			Driller Supplier :		Clien	nt	: Rh	ys Tremble	9			
Northi	ng (m)	: 0.00			Logged By : P	R	Proje	ect	: Pro	oposed Sh	eds and Pond	ls		
Groun	d Elev	ation : Not Surve	eyed		Reviewed By :		Loca	ation	: Co	rner Larki	ns Road & Ma	xwells Road,	Finley NSW	
Total I	Depth	: 3 m BGL			Date : 19	9/08/2024	Loc (Comm	ent:					
				de								Testing		
	-	c c	bo	õ					ß	S				
ter	h (m	Drigi	ic Ľ	tion		Material Description		sture	nerir	sten	DCB	PP (kPa)	SDT	Pomorko
Wa	Dept	oil O	aph	ifica		Waterial Description		Mois	feath	nsi	DOP	FF (KFa)	3F1	Remarks
		S	ō	ass				_	\$	ŏ				
				ö										
		TOPSOIL	***	ML	Sandy SILT ML: st	iff, low plasticity, dark brown, fine to		М		St				
	0.1_				medium grained sa	and, moist.								
		Natural		СН		n high plasticity, brown, trace fine to		М		F				
					modium grained se	n, high plasticity, brown, trace line to								
	F				medium gramed sa	and, moist.								
											2			
	0.5										1			
		Natural	1	СН	Silty CLAY CH: stif	f high plasticity mottled brown pale	<u>,</u>	м		St				
					brown trace fine s	ized gravel trace fine to coarse					4			
					grained sand, mois	st.					4			
					g						4			
	0.8_	Natural		CI	Sandy CLAV CL et	tiff to very stiff, medium plasticity	_	м		St-VSt	4			
					mottled brown pale	e brown grey, fine to coarse grained					5			
	_				sand, trace fine siz	red gravel, moist.					6			
	Γ													
			$\langle \rangle \rangle$											
			$\langle \rangle \rangle$											
	-													
	17													
		Natural	Ź	СН	Silty CLAY CH: ver	ry stiff high plasticity pale brown	N	M-D		VSt				
	-				mottled orange bro	own with fine to coarse grained san	d							
					trace fine sized gra	avel moist to dry	u,							
					adoo milo olzod gre									
	L											110		
												440		
	-													
	F													
	┝													
					В	H 5 Terminated at 3m								

13 Alstonvale Court East Bendigo VIC 3550 Phone: 03 5441 4881

Geotechnical Log - Borehole

υтм		:			Drill Rig	: Drillman GT10 - Landcruiser Mo	unt	Job Numb	er :24	C 0720				
Eastin	g (m)	: 0.00			Driller Supplier	:		Client	: Rł	ys Trembl	e			
Northi	na (m)	: 0.00			Logged By	: PR		Project	: Pr	- oposed Sh	eds and Pon	ds		
Group	d Elov	ation : Not Surve	wod		Boyiowod By			Location		rnor Lorki	a Road & M	wwelle Boad	Einlow NSW	
Tatal			syeu		Reviewed by							axwells Road,	Timey NOW	
Iotal L	Peptn	: 3 m BGL			Date	: 19/08/2024		Loc Comn	ient :					
				qe								Testing		
	ê	.=	og.	ပိ				æ	Bu	Icy				
iter	u) y	Drig	ic L	tior		Material Description		stur	Jeri	ster	DCP	PP (kPa)	SPT	Pomarke
Wa	Jept	oil	aph	ifice				Moi	leat	nsi	501	iii (ki u)	011	Remarks
		o	ō	ass					5	ŭ				
				ö										
		TOPSOIL	***	ML	Sandy SILT MI	· stiff, low plasticity, dark	brown, fine to	М		St				
	0.1_				medium graine	d sand. moist.								
		Natural		СН				м		St				
					SILLY CLAY CH.	sun, nigh plasticity, brow	n mouled grey,							
	-					i gravel, trace line to coar	se grained							
					sand, moist.							-		
											3			
	0.4_	Network		01.0				-		F 01				
		Naturai		СI-С ц	Slity CLAY CI-C	CH: firm to stiff, medium to	o high plasticity	, IVI		F-5t	2			
	-				pale brown mo	ttled orange brown, trace	fine sized							
					gravel, trace fir	e to medium grained san	id, moist.				5			
											4			
	-										6			
											4			
											5			
	_										-			
	1 2													
	1.2_	Notural	H		A				+					
	-	Naturai		H	As above, but s	stiπ, with fine to medium g	grained sand.	IVI		51				
	-													
	1.6													
	1.0_	Natural	1	CI-C	Sandy CLAY C	I-CH: very stiff medium to	o high plasticity	/ M		VSt				
				Н	pale brown mot	ttled orange brown fine to	o coarse	,						
					arained sand t	race fine sized gravel mo	niet							
					granica sana, t	race fine sized gravel, file	5151.							
	_													
												600+		
	-													
	Γ													
	Ļ													
						BH 6 Terminated at 3m								
_				_					_	_	_			

13 Alstonvale Court East Bendigo VIC 3550 Phone: 03 5441 4881

Geotechnical Log - Borehole

UTM		:			Drill Rig	: Drillman GT10 - Landcruiser Mount	J	ob Numb	er :24	C 0720				
Eastin	ıg (m)	: 0.00			Driller Supplier	:	с	lient	: Rh	ys Trembl	e			
North	ing (m)	: 0.00			Logged By	: PR	Р	roject	: Pr	oposed Sh	eds and Pon	ds		
Grour	d Flev	ation · Not Surve	have		Reviewed By			ocation	· Co	rner I arki	ns Road & Ma	wells Road	Finley NSW	
Total	Donth	· 2 m BGI	Jou		Data	- - 10/09/202 <i>4</i>	-							
TOLAT	Jepui	. 3 111 BGL			Date	. 19/06/2024			ient .			-		
				de								lesting		
	Ê	. <u>=</u>	-og	õ				ø	ng	Jcy				
ater	h (r	Drig	lic L	tior		Material Description		stur	heri	ster	DCP	PP (kPa)	SPT	Romarks
Ň	Dept	oi.	aph	ifica				Moi	feat	nsi	200		0	rtonianto
		o	ū	ass					5	ŏ				
				ö										
		TOPSOIL		ML	Sandy SILT MI	· stiff low plasticity dark brown fine	e to	М		St				
	0.1_		•••		medium graine	d sand moist								
		Natural		CI				м		S				
					SIITY CLAY CI:	soft, medium plasticity, brown, with f	ine to							
	L		$\langle \rangle \rangle$		medium graine	d sand, moist.								
											1			
	0.4_													
		Natural		CI-C	Silty CLAY CI-0	CH: firm to stiff, medium to high plas	ticity,	M		F-St	1			
	Ļ			Н	mottled brown	pale brown, trace fine sized gravel, t	race							
					fine to coarse of	grained sand, moist.					2			
						-								
											4			
	F										3			
											4			
											5			
	-													
											6			
	1 2													
	1.2_	Natural		CI	Sandy CLAV C	I: very stiff medium plasticity pale h	rown	M-D		VSt				
	F	Hatara		01	mottled erange	brown fine to ecore grained cand	10001							
					troco fino to mo	dium sized group, maint to dry								
			$\langle \rangle$			edium sized gravel, moist to dry.								
			$\langle \rangle \rangle$											
	F													
			$\langle \rangle$											
	L		$\langle \rangle \rangle$											
	Γ													
			$\langle \rangle \rangle$											
			$\langle \rangle \rangle$											
	L													
												550		
	2.1_										-			
		Natural		СН	Silty CLAY CH:	very stiff, high plasticity, pale brown	l i	M		VSt				
					mottled grey, tr	ace fine to medium grained sand, m	oist.							
	Ļ													
	╞													
	F													
						BH 7 Terminated at 3m								

13 Alstonvale Court East Bendigo VIC 3550 Phone: 03 5441 4881

Geotechnical Log - Borehole

UTM		:			Drill Rig	: Drillman GT10 - Landcruiser	Mount	Job Numb	er : 24	C 0720				
Eastin	ıg (m)	: 0.00			Driller Supplier	: Geotechnical Testing Servic	es	Client	: Rh	ys Trembl	e			
North	ing (m)	: 0.00			Logged By	: PR		Project	: Pr	oposed Sh	eds and Pond	is		
Grour	d Eleva	ation : Not Surve	eyed		Reviewed By	:		Location	: Co	rner Larki	ns Road & Ma	xwells Road,	Finley NSW	
Total I	Depth	: 3 m BGL			Date	: 19/08/2024		Loc Comm	ent:					
				e								Testing		
	Ê	<u> </u>	og	S				0	<u>j</u>	cy				
ater	th (n	Orig	lic L	atior		Material Description		stur	heri	ister	DCP	PP (kPa)	SPT	Remarks
Ň	Dep	Soil	irapl	sific				Moi	Neat	suo			-	
			0	class					-	0				
		TODOOU						-						
	0.1	TOPSOIL	· · · ·	ML	Sandy SILT ML	.: stiff, low plasticity, da	rk brown, fine to	M		St				
	0.1	Natural	///	CI	medium graine	d sand, moist.		м		F-St				
			$\langle \rangle \rangle$		Silty CLAY CI: 1	firm to stiff, medium pla	asticity, brown, with	h						
			$\langle \rangle \rangle$		fine to medium	grained sand, moist.								
			$\langle \rangle$											
											3			
	0.5		\square								2			
	0.5_	Natural		CI-C	Silty CLAY CI-0	CH: firm to stiff medium	n to high plasticity	м		F-St				
				н	mottled brown	pale brown, trace fine	sized gravel_trace				1			
					fine to coarse c	rained sand, moist.					3			
	-										5			
											6			
											4			
	\vdash													
											3			
	1.3													
	1.0_	Natural		CI	Sandy CLAY C	I: very stiff, medium pla	asticity, mottled	М		VSt				
					orange brown p	pale brown, fine to med	dium grained sand	,						
					trace fine sized	l gravel, moist.	-							
	-													
			\square											
			$\langle \rangle$											
	-													
	1.8_	Network												
		Natural	/	SC	Clayey SAND S	SC: dense, low plastici	ty clay, pale brown	1, ™-D						
			1		Tine to meaium	grained, moist to dry.								
			1											
			/											
			/											
			1											
	-													
			1											
			/											
			1											
	-		1									NΔ		
			()									11/2		
			/											
	2.7_		1											
	-	Natural		SW	SAND SW: me	dium dense, pale brow	n, fine to coarse	М		MD				
					grained, moist.									
						BH 8 Terminated at 3m								

13 Alstonvale Court East Bendigo VIC 3550 Phone: 03 5441 4881

Geotechnical Log - Borehole

UTM		:			Drill Rig	: Drillman GT10 - Landcruiser Mount	J	lob Numb	er :24	C 0720				
Eastin	g (m)	: 0.00			Driller Supplier	:	c	Client	: Rh	ys Tremble	Ð			
Northi	ng (m)	: 0.00			Logged By	: PR	P	Project	: Pr	oposed Sh	eds and Pond	is		
Groun	d Eleva	ation : Not Surve	eyed		Reviewed By	:	L	ocation	: Co	rner Larki	ns Road & Ma	xwells Road,	Finley NSW	
Total D	Depth	: 3 m BGL			Date	: 20/09/2024	L	.oc Comm	nent:					
									<u> </u>			Testing		
				ode										
Ļ.	(L	gin	Log	u C				Le	ring	ancy				
Vate	pth	Ō	ohic	catio		Material Description		oistu	the	siste	DCP	PP (kPa)	SPT	Remarks
~	De	Soi	Grap	sifi				Ŭ	Wea	Con				
				Clas						-				
		TOPSOIL	<u></u>	MI				м		C+				
	0.1	TOFSOIL	**•	IVIL	Sandy SILT ML	: stiff, low plasticity, dark brown, fil	ne to			51				
	0.1_	Natural	_	CI	medium graine	d sand, moist.		Лм		St				
					Silty CLAY CL:	stiff, low plasticity, brown, with fine	е							
					grained sand, n	noist.								
	0.3		_											
		Natural		CI-C	Silty CLAY CI-C	CH: firm to stiff, medium to high pla	asticity,	М		F-St	5			
				н	brown, trace fin	e grained sand, moist.								
											3			
	-													
											2			
											2			
	0.8										2			
		Natural		ML	Clayey SILT ML	.: firm to stiff, low plasticity, pale bi	rown,	М		F-St	2			
					with line to coa	rse grained sand, moist.					4			
	_													
	1.3													
	1.5_	Natural	$\overline{//}$	CI	Silty CLAY CI: 9	stiff. medium plasticity, pale brown	1	М		St				
			$\langle \rangle$		mottled orange	brown, with fine to coarse grained	d sand.							
			\square		moist.	<i>,</i> 3	,							
	_		$\langle \rangle \rangle$											
			$\langle \rangle \rangle$											
			\square											
			\square											
	1.8		$\langle \rangle \rangle$											
		Natural	1	SC	Clayey SAND S	SC: medium dense, low plasticity of	clay,	М		MD				
					pale brown, fine	e to medium grained, moist.								
			/			-								
	_		1											
			1									NA		
			$\left(\right)$											
			1											
			/											
	-		1											
			$\langle \cdot \rangle$											
			1											
			1											
			1											
			/											
			1											
			/											
			/											
			1											
						RH 0 Terminated at 2m								
			1			Dir 9 Terminateu at Sill		1						

13 Alstonvale Court East Bendigo VIC 3550 Phone: 03 5441 4881

Geotechnical Log - Borehole

тм		:			Drill Rig	: Drillman GT10 - Landcruiser Mount	Job	Numbe	er :24	C 0720				
astin	g (m)	: 0.00			Driller Supplier	:	Clier	nt	: Rh	nys Trembl	e			
lorthi	ng (m)	: 0.00			Logged By	: PR	Proje	ect	: Pr	oposed Sh	eds and Pon	ds		
Groun	d Eleva	ation : Not Surve	eyed		Reviewed By	:	Loca	ation	: Co	orner Larki	ns Road & Ma	axwells Road	, Finley NSW	
otal D	epth	: 3 m BGL			Date	: 20/08/2024	Loc	Comm	ent:					
				۵								Testing		
		-	g	Cod					5	~				
er	E)	rigir	c Lo	uo				ure	erinç	tenc				
Wat	pth	Ō	phie	cat		Material Description		oist	athe	ISIS!	DCP	PP (kPa)	SPT	Remarks
-	ő	So	Gra	ssif				Σ	We	Cor				
				Cla										
		TOPSOIL	····	MI	0 0 0			м		St				
	01	TOT SOIL		IVIL	Sandy SILT ML:	stiπ, low plasticity, dark brown, fine to		IVI						
	0.1	Natural		СН	medium grained	sand, moist.	_/	м		F-St				
				••••	Silty CLAY CH: f	firm to stiff, high plasticity, brown, trace	e							
					fine grained sand	d, moist.								
	-													
												1		
											4			
											2			
	-										-	-		
											2			
											4			
	-										5			
											_			
	0.9										5			
		Natural		CI	Silty to sandy CL	LAY CI: stiff, medium plasticity, pale		М		St	6			
	_				brown mottled or	range brown, fine to medium grained								
					sand. moist.	0								
					,									
	-													
	-													
	-													
	_													
												300		
	2.1_		///											
		Natural	/	SC	Clayey SAND So	C: medium dense to dense, low		м		MD-D				
			1		plasticity clay, pa	ale brown mottled orange brown, fine t	to							
	-				coarse grained,	moist.								
			1											
			$\langle \cdot \rangle$											
			/											
	-		1											
			1											
			/											
			1											
	28		/											
	2.0_	Natural		SC	As above, but m	edium dense, wet	· - ·			MD	1			
				-		ealant donoo, wot.								
			/											
			1			BH 10 Terminated at 3m								

13 Alstonvale Court East Bendigo VIC 3550 Phone: 03 5441 4881

Geotechnical Log - Borehole

UTM		:			Drill Rig : Drillman GT10 - Landcruiser Mount	Job Nu	umbe	er:24	C 0720				
Eastin	g (m)	: 0.00			Driller Supplier :	Client		: Rh	ys Tremble	Ð			
Northi	ng (m)	: 0.00			Logged By : PR	Projec	t	: Pr	oposed Sh	eds and Pon	is		
Groun	d Eleva	ation : Not Surve	eyed		Reviewed By :	Locati	ion	: Co	rner Larkin	ns Road & Ma	xwells Road	Finley NSW	
Total D	Depth	: 3 m BGL	-		Date : 20/08/2024	Loc Co	omm	ent:				-	
			1 1				-				Testing		
				ode							resting		
	μ)	in	Log	ŭ			e	bu	ncy				
ater	th (I	orió	ic I	atio	Material Description		stur	heri	ste	DCP	PP (kPa)	SPT	Remarks
Ň	Depi	10	apl	ifica			Moi	/eat	suc				
		o	ū	ass				5	ŭ				
				ö									
		TOPSOIL		ML	Sandy SILT ML: stiff, low plasticity, dark brown, fine to		м		St				
	0.1				modium grained aand maint	, I							
		Natural	///	CI	medium graineu sanu, moist.		м		St				
			$\langle \rangle$		Sandy CLAY CI: stiff, medium plasticity, brown, fine to								
					medium grained sand, moist.								
	-		$\langle \rangle$										
			$\langle \rangle \rangle$										
	04		$\langle \rangle$							3			
	0.4_	Natural		СН	Silty CLAV CH: stiff high plasticity, brown mottled		м		St				
		, and a		011	arange brown trees fine grained and maint		.			3			
	-				orange brown, trace line grained sand, moist.								
	06									4			
	0.0_	Natural		CI	Sandy to ailty CLAV CLy atiff to yony atiff, law plaatiaity		м		St_\/St				
		, activitation of the second s		0L	pale brown mottled orange brown fine to coarse	, "			01-001	5			
	-				grained sand, moist.					6			
										10			
										12			
	-												
	-												
	-												
	-												
	1.8_	Netwol		<u> </u>		,							
		Naturai	/	30	Clayey SAND SC: medium dense to dense, low								
			1		plasticity clay, pale brown mottled orange brown, fine	to							
					coarse grained, moist.								
	\vdash		1								250		
			1								200		
			1										
			1										
	-												
			/										
			1										
			1										
	$\left \right $												
			1										
	2.7_	Nat	\mathbf{P}		+	· ,;	-, - +						
		INATULA	/	30	As above, but medium dense, wet.		/V						
			1										
			1										
			1		RH 11 Terminated at 3m								
		1					I		1			1	1

13 Alstonvale Court East Bendigo VIC 3550 Phone: 03 5441 4881

Geotechnical Log - Borehole

UTM		:			Drill Rig : Dril	Ilman GT10 - Landcruiser Mount	Job Num	ber :	24C 0720				
Eastir	g (m)	: 0.00			Driller Supplier :		Client	:	Rhys Trembl	e			
North	ng (m)	: 0.00			Logged By : PR		Project	:1	Proposed Sh	eds and Pon	ds		
Grour	d Flev	ation · Not Surve	have		Reviewed By		Location		Corner I arki	ns Road & M	axwells Road	Finley NSW	
Total)onth	· 2 m BGI	Jou		Data : 20/	09/2024	Los Com	monti	201101 20110			,	
TOTAL	Jepui	. 3 111 BGL				00/2024	LUC COM	ment .					
				qe							Testing		
	-	E	go	õ				D D	S				
ler	m) (rigi	Ċ	ion			ture	erin	ten				
Wa	eptł	0	hda	lcat		Material Description	lois	ath	usis	DCP	РР (кРа)	SPT	Remarks
	ă	š	5	ssil			2	Ň	S				
				Cla									
		тореон	· · ·	N AL					C+				
		TUPSUL	**•	IVIL	Sandy SILT ML: stif	f, low plasticity, dark brown, fine to			31				
	0.1_	Network			medium grained sar	nd, dry.			E 01	-			
		Naturai		СН	Silty CLAY CH. firm	to stiff high plasticity brown trace			F-5t				
					fine to medium grain	ned sand moist							
	-												
											-		
										2			
											-		
										2			
	-										-		
										2			
	0.6_										-		
		Natural		CI-C H	Silty CLAY CI-CH: fi	irm to stiff, medium to high plasticit	у, М		F-St	3			
	_				moist.	trace line to medium gramed sand	ı,			2			
										8	-		
	_									6	-		
	1.1_	Natural		0			M		Ct	-			
		Naturai		CI		medium plasticity, orange brown			51				
					mottled grey, with fil	ne to medium grained sand, trace							
	-				fine to medium size	d gravel, moist.							
	-												
	-												
	\vdash										450	4	
											150		
	2.1_	NL C C	///	00	0. 0			-		4			
		Natural	/	SC	Clayey SAND SC: n	nedium dense, low plasticity clay,	M		MD				
			1		grey, fine to coarse	grained, moist.							
	F												
			1										
			1										
			/										
	F		1										
			/										
			/										
			.,										
			/										
	- I		1										
	2.8_				+			. +	-+	-			
		Natural	/	SC	As above, but wet.		W		MD				
			1										
						12 Terminated at 2m							
			1		ВН	12 ieiiiiiidteu at 3m	1		1	1	1	1	1

13 Alstonvale Court East Bendigo VIC 3550 Phone: 03 5441 4881

Geotechnical Log - Borehole

UTM		:			Drill Rig	: Drillman GT10 - Landcruiser Mount	Jo	b Numb	er :24	C 0720				
Eastin	ıg (m)	: 0.00			Driller Supplier	:	Cli	ient	: Rł	ys Trembl	Ð			
Northi	ing (m)	: 0.00			Logged By	: PR	Pro	oject	: Pr	oposed Sh	eds and Pon	ds		
Groun	d Elev	ation : Not Surve	eyed		Reviewed By	:	Lo	cation	: Co	orner Larki	ns Road & Ma	axwells Road,	Finley NSW	
Total Depth : 3 m BGL		Date	: 20/08/2024	Lo	c Comm	nent:								
				de								Testing		
-		<u>_</u>	og	õ				0	DC	cy				
ter	h (n	Drigi	ic Ľ	tion		Material Description		sture	Jerir	sten	DCP	PR (kRa)	SDT	Bomarka
Wa	Dept	oil O	aph	ifica		Waterial Description		Mois	feath	nsi	DOP	FF (KFd)	3F1	Remarks
		S	ō	ass				_	\$	ŭ				
				ö										
		TOPSOIL	***	ML	Sandy SILT ML	.: stiff, low plasticity, dark brown, fine to	o	D		St				
	0.1_				medium graine	d sand, dry.								
		Natural		СН		stiff to yory stiff, high plasticity, brown		М		St-VSt				
					trace fine grain	ad cand moist	,							
	F				liace line grain	eu sanu, moist.								
											4			
											4			
	F													
											3			
											F			
											э			
	L										8			
											-			
											7			
	0.9_	National	4	01.0		CLAY CLOUD stiff to your stiff, modium to bigh				011/01		-		
		Naturai		сі-с ц	Silty CLAY CI-C	CH: stiff to very stiff, medium to high		IVI		51-V51	6			
	-				plasticity, pale t	prown mottled grey, trace fine sized								
					gravel, trace fin	e to coarse grained sand, moist.								
	1.3													
		Natural	1	CI	Sandv CLAY C	I: verv stiff, medium plasticity, pale bro	wn	М		VSt				
			$\langle \rangle \rangle$		mottled orange	brown, fine to medium grained sand								
			$\langle \rangle \rangle$		moist	2.0,								
	L													
	-		$\langle \rangle \rangle$											
			$\langle \rangle \rangle$											
	-											250		
	2.2													
		Natural	1	SC	Clayey SAND S	SC: medium dense, low plasticity clay,		М		MD				
					pale brown, fine	e to coarse grained, moist.								
			/			C I								
			1											
	F		1											
			1											
			1											
	^{2.} /_	Natural						1.07	+					
	F	induídi	/	30	As above, but v	vel.		vv						
			1											
			1											
			/			BH 13 Terminated at 3m								

13 Alstonvale Court East Bendigo VIC 3550 Phone: 03 5441 4881

Geotechnical Log - Borehole

UTM : Dolling Oblight Dolling Oblight Dolling Distribution (or carbon of the standarding for carbon of the s															
Entry Implicity ::::::::::::::::::::::::::::::::::::	UTM		:			Drill Rig	: Drillman GT10 - Landcruiser M	lount J	ob Numb	er :24	C 0720				
Note: 1:00: logge by intervent intervent interven	Eastir	ng (m)	: 0.00			Driller Supplier	:	c	lient	: Rł	ys Tremble	Ð			
1 Lateline Constructive tand & Weather Proved We	Northing (m) : 0.00		Logged By : PR		Project : Proposed Sheds and Ponds										
Note of the state is the s	Ground Elevation : Not Surveyed		Reviewed By :		L	Location		rner Larkin	ns Road & Ma	axwells Road,	Finley NSW				
Note: Note: <th< td=""><td colspan="2">Total Depth : 3 m BGL</td><td colspan="2">Date : 20/08/2024</td><td>L</td><td>.oc Comm</td><td>nent:</td><td></td><td></td><td></td><td></td><td></td></th<>	Total Depth : 3 m BGL		Date : 20/08/2024		L	.oc Comm	nent:								
0 0		Γ			0								Testing		
0 0			_	5	Code					_	~				
0 0	5	E)	igi	Lo Lo	on (ure	sring	enc				
0 0	Wat	pth	Ō	phic	icati		Material Description		loist	athe	Isist	DCP	PP (kPa)	SPT	Remarks
Image: 100 model with the set of		ă	š	G	assil				2	Ň	S				
1 TOPSOL: M. Starty SLT TML: stiff, low plasticity, brown, fine to medium grained sand, dry. 0 St. 0.1 Natural 01 St. (DAV CH: stiff, low plasticity, brown, trace fine grained sand, moist. M St. 4 3 0.6. Natural 01 Sity CLAY CI: stiff to very stiff, medium plasticity, pale brown, with fine to coarse grained sand, moist. M Sity SLAW 6 0.6. Natural 01 Sity CLAY CI: stiff to very stiff, medium plasticity, pale brown, with fine to coarse grained sand, moist. M Sity SLAW 6 7 9 9 9 9 9 9 7.7 Natural SC Clayey, SAND SC: medium dense to dense, low plasticity clay, pale brown, fine to coarse grained, moist. M MO-D 4 1 7.7 Natural SC Clayey, SAND SC: medium dense to dense, low plasticity clay, pale brown, fine to coarse grained, moist. M MO-D 4 20 7.7 9 9 1 1 20 1 20 7.7 9 1 1 1 1 </td <td></td> <td></td> <td></td> <td></td> <td>Ğ</td> <td></td>					Ğ										
1.1 Natural 0.1 Sity CLAY CH: stiff. high plasticity, brown, trace fine M Sit 0.1 Natural 0.1 Sity CLAY CH: stiff. high plasticity, brown, trace fine 4 3 0.6 Natural 0.1 Sity CLAY CI: stiff to very stiff, medium plasticity, pake M Sity Sity Sity Sity Sity Sity Sity Sity			TOPSOIL	<u></u>	ML	Sandy SILT MI	· stiff low plasticity brow	vn fine to	D		St				
Matural CH Sity CLAV CH: stift high plasticity, brown, trace fine M Sti 0.6 Matural CI Sity CLAV CH: stift hovery stiff, medium plasticity, pale M Si-VSL 0.6 Matural CI Sity CLAV CI: stift hovery stiff, medium plasticity, pale M Si-VSL 5 0.6 Matural CI Sity CLAV CI: stift hovery stiff, medium plasticity, pale M Si-VSL 5 1 Matural CI Sity CLAV CI: stift hovery stiff, medium plasticity, pale M Si-VSL 5 1 Matural CI Sity CLAV CI: stift hovery stiff, medium plasticity, pale M Si-VSL 5 1 Matural CI Sity CLAV CI: stift hovery stiff, medium plasticity, pale M M Sity CLAV CI: stift hovery stiff, medium plasticity, pale 1 Matural SC Clayey SAND SC: medium dense to dense, low plasticity clay, pale brown, fine to ccarse grained, moist. M MD-D 1 Matural SC As above, but medium dense, wet. W MD 2.4 Matural SC As above, but medium dense, wet. W MD		0.1_		••••		medium graine	tium grained sand dry								
Silly CLAY CH: Stift night plasticity, brown, trace line grained sand, moist. 0.5 Natural CI Silly CLAY CI: stift to very stiff, medium plasticity, pale M 1 Silly CLAY CI: stift to very stiff, medium plasticity, pale 1 M 1.7 Natural 2.8 Clayey SAND SC: medium dense to dense, low M MD-D 1.7 Natural 2.8 Clayey SAND SC: medium dense to dense, low M MD-D 2.8 Clayey SAND SC: medium dense to dense, low M MD-D 2.8 SC Netural SC 2.8 SC Netural SC 2.8 Netural SC As above, but medium dense, wet. W Metural SC 2.8 SC As above, but medium dense, wet. W			Natural		СН		a bana, ary.		M		St				
1.7 Natural SC Clayey SAND SC: medium dense to dense, low M MD-D 1.7 Natural SC Clayey SAND SC: medium dense to dense, low M MD-D 2.8						SIITY CLAY CH:	stiff, nign plasticity, brov	wh, trace fine							
0.6 Metural Ci Silty CLAY CI: stiff to very stiff, medium plasticity, pale M Silv Silv Silv Silv Silv Silv Silv Silv		F				grained sand, r	noist.								
0.6 Natural CL Sity CLAY CI: stiff to very stiff, medium plasticity, pale M StrVSi 5 0.6 Natural CL Sity CLAY CI: stiff to very stiff, medium plasticity, pale M StrVSi 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													-		
0.5 Natural Cl Sithy CLAY CI: stiff to very stiff, medium plasticity, pale M Sithy Sithy 5 1 1 Cl Sithy CLAY CI: stiff to very stiff, medium plasticity, pale M Sithy 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												4			
0.6 Natural CI Sity CLAY CI: stiff to very stiff, medium plasticity, pale brown, with fine to coarse grained sand, moist. M St-VSI 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <															
0.6 Natural Cl. Sility CLAY CI: stiff to very stiff, medium plasticity, pale brown, with fine to coarse grained sand, moist. M St-VSt 5 1.7 Natural Cl. Strong Santa S												3			
0.6 Natural Cl Sitty CLAV CI: stiff to very stiff, medium plasticity, pale M SitVSI 5 0 0 0 0 0 0 1 0 0 0 0 0 1.7 Natural SitVSI SitVSI 0 0 0 1.8 SitVSI SitVSI SitVSI SitVSI SitVSI SitVSI SitVSI 1.9 SitVSI SitVSI SitVSI SitVSI SitVSI SitVSI SitVSI SitVSI 1.9 SitVSI SitVSI<		F										2	1		
Natural Cl Sitty CLAV Cf: stiff to very stiff, medium plasticity, pale M St-VSt 6 - <td></td> <td>0.6_</td> <td></td>		0.6_													
1.7 Natural SC Clayey SAND SC: medium dense, todense, low plasticity clay, pale brown, fine to coarse grained, moist. M MD-D 2.8 SC As above, but medium dense, wet. W MD			Natural		CI	Silty CLAY CI:	stiff to very stiff, medium	plasticity, pale	М		St-VSt	5			
1.7 Natural SC Clayey SAND SC: medium dense to dense, low plasticity clay, pale brown, fine to coarse grained, moist. M MD-D 2.8 Natural SC As above, but medium dense, wet. W MD-D 2.8 Natural SC As above, but medium dense, wet. W MD-D				$\langle \rangle \rangle$		brown, with fine	e to coarse grained sand	l, moist.							
1.7 Natural SC Clayey SAND SC: medium dense to dense, low plasticity clay, pale brown, fine to coarse grained, moist. M MD-D - - - - - -		F		\square								8			
I.7 Natural SC Clayey SAND SC: medium dense to dense, low M MD-D I.7 Natural SC Clayey SAND SC: medium dense to dense, low M MD-D I.7 Natural SC Clayey SAND SC: medium dense to dense, low M MD-D I.7 Natural SC Clayey SAND SC: medium dense, low M MD-D I.7 Natural SC Clayey SAND SC: medium dense, wet. M MD-D I.7 Natural SC Clayey barbon, fine to coarse grained, moist. M MD-D I.7 Natural SC As above, but medium dense, wet. W MD I.8H 14 Terminated at 3m H14 Terminated at 3m M MD III III IIII IIII IIIII IIII IIII III												_			
1.7 Natural SC Clayey SAND SC: medium dense to dense, low M MD-D 1.7 Natural SC Clayey SAND SC: medium dense to dense, low M MD-D 2.8												1			
1.7 Natural SC Clayey SAND SC: medium dense to dense, low plasticity clay, pale brown, fine to coarse grained, moist. M MD-D 2.8												9			
I.7 Natural SC Clayey SAND SC: medium dense to dense, low plasticity clay, pale brown, fine to coarse grained, moist. M MD-D - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <		\vdash		$\langle \rangle$									-		
1.7 Natural SC Clayey SAND SC: medium dense to dense, low plasticity clay, pale brown, fine to coarse grained, moist. M MD-D - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <				$\langle \rangle \rangle$											
1.7 Natural SC Clayey SAND SC: medium dense to dense, low plasticity clay, pale brown, fine to coarse grained, moist. M MD-D -															
1.7 Natural SC Clayey SAND SC: medium dense to dense, low plasticity clay, pale brown, fine to coarse grained, moist. M MD-D - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <															
1.7 Natural SC Clayey SAND SC: medium dense to dense, low plasticity clay, pale brown, fine to coarse grained, moist. M MD-D - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.8 - - -				$\langle \rangle \rangle$											
1.7 Natural SC Clayey SAND SC: medium dense to dense, low plasticity clay, pale brown, fine to coarse grained, moist. M MD-D -		F		\square											
1.7 Natural SC Clayey SAND SC: medium dense to dense, low plasticity clay, pale brown, fine to coarse grained, moist. M MD-D - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <				$\langle \rangle \rangle$											
1.7 Natural SC Clayey SAND SC: medium dense to dense, low plasticity clay, pale brown, fine to coarse grained, moist. M MD-D - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <				$\langle \rangle$											
1.7 Natural SC Clayey SAND SC: medium dense to dense, low plasticity clay, pale brown, fine to coarse grained, moist. M MD-D - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -				$\langle \rangle \rangle$											
1.7 Natural SC Clayey SAND SC: medium dense to dense, low plasticity clay, pale brown, fine to coarse grained, moist. M MD-D - - SC Clayey SAND SC: medium dense, work. M MD-D - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -		F		$\langle \rangle$											
1.7 Natural SC Clayey SAND SC: medium dense to dense, low plasticity clay, pale brown, fine to coarse grained, moist. M MD-D -				$\langle \rangle \rangle$											
1.7 Natural SC Clayey SAND SC: medium dense to dense, low plasticity clay, pale brown, fine to coarse grained, moist. M MD-D - Natural SC As above, but medium dense, wet. M MD-D 2.8 Natural SC As above, but medium dense, wet. W MD-															
1.7 Natural SC Clayey SAND SC: medium dense, low plasticity clay, pale brown, fine to coarse grained, moist. M MD-D - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<		1 7													
2.8 Natural SC As above, but medium dense, wet. W MD		^{1.} ′_	Natural	1	SC	Clavey SAND 9	SC: medium dense to de	ense low	м		MD-D				
2.8 Natural SC As above, but medium dense, wet. W MD		F		1	_	plasticity clay	pale brown fine to coars	e grained moist							
2.8 Natural SC As above, but medium dense, wet. BH 14 Terminated at 3m				/		plasticity olay, p		o grainoù, moioù							
2.8 Natural SC As above, but medium dense, wet. W MD				1											
2.8 Natural SC As above, but medium dense, wet. W MD															
2.8 Natural SC As above, but medium dense, wet. W MD		F		/											
2.8 Natural SC As above, but medium dense, wet. W MD BH 14 Terminated at 3m MD				/									220		
2.8 Natural SC As above, but medium dense, wet. W MD BH 14 Terminated at 3m MD				1											
2.8 Natural SC As above, but medium dense, wet. W MD BH 14 Terminated at 3m				1											
2.8 Natural SC As above, but medium dense, wet. W MD BH 14 Terminated at 3m				/											
2.8		Γ		/											
2.8				1											
2.8		1													
2.8		1		/											
2.8		F		/											
2.8		1		1											
2.8 Natural SC As above, but medium dense, wet. W MD BH 14 Terminated at 3m															
2.8 Natural SC As above, but medium dense, wet. W MD BH 14 Terminated at 3m BH 14 Terminated at 3m MD		1		/											
2.8 Natural SC As above, but medium dense, wet. W MD BH 14 Terminated at 3m BH 14 Terminated at 3m MD MD		L		/											
Natural SC As above, but medium dense, wet. W MD BH 14 Terminated at 3m BH 14 Terminated at 3m Image: SC Image: SC		2.8_		1					.	L	L				
BH 14 Terminated at 3m		1	Natural	/	SC	As above, but r	medium dense, wet.		W		MD				
BH 14 Terminated at 3m		1		1											
							BH 14 Terminated at 3m								

13 Alstonvale Court East Bendigo VIC 3550 Phone: 03 5441 4881

Geotechnical Log - Borehole

Easting (m) : 0.00 Driller Supplier : Driller Supplier Client : Proposed Sheds and Ponds Reviewed By : Logged By : PR Project : Proposed Sheds and Ponds Total Depth : 3 m BGL Date : 20/08/2024 Loc Comment : Image: State of the state	
Northing (m) :: Logged By :: Project :: :: Project :: :: Project :: :: :: Project :: :: :: Project :: <th< td=""><td></td></th<>	
Ground Elevation : Not Surveyed Reviewed By : Location : Corner Larkins Road & Maxwells Road, Find Total Depth : 3 m BGL Date : 20/08/2024 Loc Comment : Log up up <th< td=""><td></td></th<>	
Total Depth : 3 m BGL Date : 20/08/2024 Loc Comment : u u u u u u Testing u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u <td< td=""><td>ley NSW</td></td<>	ley NSW
Image: bit with the bit wit	
unput beg unput beg o	
triangle triangle <thtr> triangle triangle<!--</td--><td></td></thtr>	
□ □	SPT Remarks
0.1 TOPSOIL Image: ML stiff, low plasticity, dark brown, fine to medium grained sand, moist. M St Natural CH Silty CLAY CH: stiff, high plasticity, brown, with fine to coarse grained sand, moist. M St	
0.1 ML Sandy SILT ML: stiff, low plasticity, dark brown, fine to M St 0.1 M St Natural CH Silty CLAY CH: stiff, high plasticity, brown, with fine to coarse grained sand, moist. M St	
Natural CH Medium grained sand, moist. Natural CH Silty CLAY CH: stiff, high plasticity, brown, with fine to coarse grained sand, moist.	
coarse grained sand, moist.	
5	
Natural CI Silty CLAY CI: stiff, medium plasticity, pale brown M St 7 mottled orange brown, trace fine to medium grained	
sand, moist.	
1.3 Natural CL CL Sandy CL AX CL CL firm to stiff law to medium M E St	
I plasticity pale brown mottled orange brown fine to	
medium grained sand, moist.	
BH 15 Terminated at 3m	

13 Alstonvale Court East Bendigo VIC 3550 Phone: 03 5441 4881

Geotechnical Log - Borehole

UTM		:			Drill Rig	: Drillman GT10 - Landcruiser Mount	Job Nu	ımbe	er : 24	C 0720				
Eastir	ıg (m)	: 0.00			Driller Supplier	:	Client		: Rł	ys Trembl	e			
North	ing (m)	: 0.00			Logged By	: PR	Project	t	: Pr	oposed Sh	eds and Pon	ls		
Grour	nd Eleva	ation : Not Surve	eyed		Reviewed By	:	Locatio	on	: Co	orner Larki	ns Road & Ma	xwells Road	Finley NSW	
Total Depth : 3 m BGL			Date	: 20/08/2024	Loc Co	mm	ent:							
				e		Tes		Testing						
	_	c	bo	Cod					D	cy				
ter	m) (Drigi	ic L	tion		Metaniel Deservición	ti te		ierin	sten	DOD		ODT	Demode
Wa	le ptl	oil O	aph	fica		Material Description	sion		eath	nsis	DCP	РР (кРа)	501	Remarks
		S	Ģ	ass			-	-	3	ŭ				
				ö										
		TOPSOIL		ML	Sandy SILT ML	.: stiff, low plasticity, dark brown, fine to	, ∣ №	1		St				
	0.1_				medium graine	d sand, moist.								
		Natural		СН	Silty CLAV CH	V CLAY CH: stiff high plasticity brown trace fine		1		St				
					arained sand r	noist								
	-				granioù baria, r									
											4			
											2			
											5			
											5			
	0.6_						<u> </u>							
		Natural		CI	Sandy CLAY C	I: stiff to very stiff, medium plasticity,		1		St-VSt	4			
					orange brown r	nottled pale brown, fine to medium								
	-				grained sand, t	race line sized gravel, moist.					6			
			$\langle \rangle \rangle$								5			
											7			
	_													
			$\langle \rangle \rangle$											
	-													
	-													
	1.9_	Notural	///	80						MD				
		naturai	/	30	Clayey SAND S	SC: medium dense, high plasticity clay,	, ^{IN}	"						
	-		1		pale brown, fine	e to coarse grained, moist.								
			1											
			/											
	Ļ		1											
			1											
			$^{\prime}$											
			/											
			1											
	F													
	2.6_		\boldsymbol{I}						L	L				
		Natural	1	SC	As above, but v	wet.	V	v [MD				
	-													
			/											
			1											
			/			BH 16 Terminated at 3m								

Report Number:	P242782-1
Issue Number:	1
Date Issued:	09/09/2024
Client:	GTS Consultancy Department
	13 Alstonvale Court , East Bendigo VIC 3550
Contact:	Shane Hampton
Project Number:	P242782
Project Name:	Proposed Sheds and Ponds
Project Location:	Larkins and Maxwells Road, Finley
Client Reference:	24C 0720
Work Request:	16124
Sample Number:	B24-16124A
Date Sampled:	20/08/2024
Dates Tested:	29/08/2024 - 04/09/2024
Sampling Method:	Sampled by Client
	The results apply to the sample as received
Sample Location:	BH1 (0.5-1.0m)
Material:	Refer to Borehole Logs

Particle Size	Distribution (A	S1289 3	3.6.1)			
Sieve	Passed %	Passin Limits	g	Retained %	Retair Limits	ned
19 mm	100			0		
4.75 mm	100			0		
2.36 mm	99			1		
1.18 mm	94			4		
0.6 mm	88			6		
0.425 mm	84			4		
0.3 mm	80			3		
0.15 mm	74			6		
0.075 mm	69			5		
Atterberg Lim	nit (AS1289 3.1	1.2 & 3.2	2.1 & 3.	3.1)	Min	Max
Sample Histo	ry		0	ven Dried		
Preparation N	/lethod			Dry Sieve]	
Liquid Limit (%)			43		
Plastic Limit ((%)			16		
Plasticity Inc	dex (%)			27		
Linear Shrink	age (AS1289	3.4.1)			Min	Max
Moisture Con	dition Determi	ined By	AS	1289.3.1.2		-
Linear Shrink	age (%)			12.0		
Cracking Cru	mbling Curling	J		Curlin	g	
Emerson Cla	ss Number of	a Soil (A	S 1289	9 3.8.1)	Min	Max
Emerson Clas	SS			5		
Soil Descripti	on		Refe	r to Borehole Logs		
Nature of Wa	ter			Potable		
Temperature of Water (^o C)				24.2		
* Mineral Present			C	arbonate		

Geotechnical Testing Services (Southern) Bendigo Soil and Concrete Testing Laboratory 13 Alstonvale Court East Bendigo VIC 3550 Phone:

Email: jamess@gts.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED ACCREDITATION

NATA

Approved Signatory: James Smith CMT Laboratory Supervisor NATA Accredited Laboratory Number: 19506

Misnill

Report Number:	P242782-1
Issue Number:	1
Date Issued:	09/09/2024
Client:	GTS Consultancy Department
	13 Alstonvale Court , East Bendigo VIC 3550
Contact:	Shane Hampton
Project Number:	P242782
Project Name:	Proposed Sheds and Ponds
Project Location:	Larkins and Maxwells Road, Finley
Client Reference:	24C 0720
Work Request:	16124
Sample Number:	B24-16124B
Date Sampled:	20/08/2024
Dates Tested:	29/08/2024 - 04/09/2024
Sampling Method:	Sampled by Client
	The results apply to the sample as received
Sample Location:	BH5 (2.5-3m)
Material:	Refer to Borehole Logs

Particle Size	Distribution (A	S1289 3	3.6.1)				
Sieve	Passed %	Passir Limits	g	Retained %	Retair Limits	ned	
19 mm	100			0			
9.5 mm	100			0			
6.7 mm	100			0			
4.75 mm	100			0			
2.36 mm	99			1			
1.18 mm	98			1			
0.6 mm	95			2			
0.425 mm	93			2			
0.3 mm	90			3			
0.15 mm	86			4			
0.075 mm	81			5			
Atterberg Limit (AS1289 3.1.2 & 3.2.1 & 3.3.1) Min Max							
Sample Histo	ry		0	ven Dried			
Preparation M	1ethod			Dry Sieve			
Liquid Limit (9	%)			61			
Plastic Limit (%)			19			
Plasticity Ind	lex (%)			42			
Linear Shrink	age (AS1289	3.4.1)			Min	Max	
Moisture Con	dition Determi	ined By	AS	1289.3.1.2			
Linear Shrink	age (%)			12.5			
Cracking Crui	mbling Curling	J		Cracking & (Curling	4	
Emerson Clas	ss Number of	a Soil (A	S 1289	9 3.8.1)	Min	Max	
Emerson Clas	SS			4 *			
Soil Description	on		Refe	r to Borehole Logs		•	
Nature of Wa		Potable					
Temperature		23.7					
* Mineral Present				arbonate			

Geotechnical Testing Services (Southern) Bendigo Soil and Concrete Testing Laboratory 13 Alstonvale Court East Bendigo VIC 3550 Phone:

Email: jamess@gts.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED

NATA

Report Number:	P242782-1
Issue Number:	1
Date Issued:	09/09/2024
Client:	GTS Consultancy Department
	13 Alstonvale Court , East Bendigo VIC 3550
Contact:	Shane Hampton
Project Number:	P242782
Project Name:	Proposed Sheds and Ponds
Project Location:	Larkins and Maxwells Road, Finley
Client Reference:	24C 0720
Work Request:	16124
Sample Number:	B24-16124C
Date Sampled:	20/08/2024
Dates Tested:	29/08/2024 - 04/09/2024
Sampling Method:	Sampled by Client
	The results apply to the sample as received
Sample Location:	BH9 (0.7-1.2m)
Material:	Refer to Borehole Logs

Particle Size	Distribution (A	S1289 3	3.6.1)			
Sieve	Passed %	Passin Limits	g	Retained %	Retai Limits	ned
19 mm	100			0		
4.75 mm	100			0		
2.36 mm	99			1		
1.18 mm	98			1		
0.6 mm	97			2		
0.425 mm	95			1		
0.3 mm	93			2		
0.15 mm	87			6		
0.075 mm	81			6		
Atterberg Lim	it (AS1289.3	12&32	1 & 3	3 1)	Min	Max
Sample Histo	rv	1.12 a 0.12	0	ven Dried		тнах
Preparation N	/lethod			Drv Sieve	1	
Liquid Limit (9	%)			23		
Plastic Limit (·/////////////////////////////////////			18		
Plasticity Inc	lex (%)			5		
Linear Shrink	age (AS1289	3.4.1)			Min	Max
Moisture Con	dition Determ	ined By	AS	1289.3.1.2		
Linear Shrink	age (%)			1.5		
Cracking Cru	mbling Curling	9		Crackir	ıg	
Emerson Clas	ss Number of	a Soil (A	S 1289	3.8.1)	Min	Max
Emerson Clas	SS			4 *		
Soil Descripti	on		Refe	r to Borehole Logs		-
Nature of Water				Potable		
Temperature of Water (^o C)				24.2		
* Mineral Present			С	arbonate		

Geotechnical Testing Services (Southern) Bendigo Soil and Concrete Testing Laboratory 13 Alstonvale Court East Bendigo VIC 3550 Phone:

Email: jamess@gts.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED ACCREDITATION

NATA

Approved Signatory: James Smith CMT Laboratory Supervisor NATA Accredited Laboratory Number: 19506

Report Number: P242782-1

Report Number:	P242782-1
Issue Number:	1
Date Issued:	09/09/2024
Client:	GTS Consultancy Department
	13 Alstonvale Court , East Bendigo VIC 3550
Contact:	Shane Hampton
Project Number:	P242782
Project Name:	Proposed Sheds and Ponds
Project Location:	Larkins and Maxwells Road, Finley
Client Reference:	24C 0720
Work Request:	16124
Sample Number:	B24-16124D
Date Sampled:	20/08/2024
Dates Tested:	29/08/2024 - 06/09/2024
Sampling Method:	Sampled by Client
	The results apply to the sample as received
Sample Location:	BH9 (1.3-1.8m)
Material:	Refer to Borehole Logs

Particle Size	Distribution (A	S1289 3	3.6.1)	_		
Sieve	Passed %	Passin Limits	g	Retained %	Retained Limits	
19 mm	100			0		
9.5 mm	100			0		
6.7 mm	100			0		
4.75 mm	99			0		
2.36 mm	99			1		
1.18 mm	98			1		
0.6 mm	97			1		
0.425 mm	96			1		
0.3 mm	95			1		
0.15 mm	86			9		
0.075 mm	71			15		
Atterberg Lim	Min	Max				
Sample Histo	ry		0	ven Dried		
Preparation M	lethod			Dry Sieve		
Liquid Limit (9	%)			41		
Plastic Limit (%)			16		
Plasticity Ind	lex (%)			25		
Linear Shrink	age (AS1289	3.4.1)			Min	Max
Moisture Con	dition Determi	ined By	AS	1289.3.1.2		-
Linear Shrink	age (%)	2		11.0		Ι
Cracking Crui	mbling Curling)		Cracking & Cr	umbling	g
Emerson Clas	ss Number of	a Soil (A	S 1289	9 3.8.1)	Min	Max
Emerson Clas	SS	,		4 *		
Soil Description			Refe	r to Borehole Logs		•
Nature of Wa		Potable				
Temperature		24.2				
* Mineral Pres	sent		l c	arbonate		

Geotechnical Testing Services (Southern) Bendigo Soil and Concrete Testing Laboratory 13 Alstonvale Court East Bendigo VIC 3550 Phone:

Email: jamess@gts.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: James Smith CCREDITATION NATA Accredited Laboratory Number: 19506

NATA

Report Number:	P242782-1		
Issue Number:	1		
Date Issued:	09/09/2024		
Client:	GTS Consultancy Department		
	13 Alstonvale Court , East Bendigo VIC 3550		
Contact:	Shane Hampton		
Project Number:	P242782		
Project Name:	Proposed Sheds and Ponds		
Project Location:	Larkins and Maxwells Road, Finley		
Client Reference:	24C 0720		
Work Request:	16124		
Sample Number:	B24-16124E		
Date Sampled:	20/08/2024		
Dates Tested:	29/08/2024 - 03/09/2024		
Sampling Method:	Sampled by Client		
	The results apply to the sample as received		
Sample Location:	BH11 (0.6-1.1m)		
Material:	Refer to Borehole Logs		

Particle Size	Distribution (A	S1289 3	8.6.1)			
Sieve	Passed %	Passin Limits	g	Retained %	Retair Limits	ned
19 mm	100			0		
6.7 mm	100			0		
4.75 mm	100			0		
2.36 mm	100			0		
1.18 mm	98			2		
0.6 mm	94			4		
0.425 mm	90			4		
0.3 mm	81			9		
0.15 mm	61			20		
0.075 mm	49			12		
Atterberg Lim	nit (AS1289 3.	1.2 & 3.2	.1 & 3.3	3.1)	Min	Max
Sample Histo	ry		0	ven Dried		
Preparation Method		D	Dry Sieve			
Liquid Limit (%)			24			
Plastic Limit (%)			16			
Plasticity Index (%)			8			
Linear Shrink	age (AS1289	3.4.1)			Min	Max
Moisture Con	dition Determ	ined By	AS	1289.3.1.2		
Linear Shrink	age (%)		5.0			
Cracking Crumbling Curling			Cracking & (Curling		
Emerson Cla	ss Number of	a Soil (A	S 1289	9 3.8.1)	Min	Max
Emerson Cla	SS			5		
Soil Description		Refe	r to Borehole Logs		-	
Nature of Water			Potable			
Temperature of Water (°C)		24.2				

Geotechnical Testing Services (Southern) Bendigo Soil and Concrete Testing Laboratory 13 Alstonvale Court East Bendigo VIC 3550 Phone:

Email: jamess@gts.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

A WORLD RECOGNISED ACCREDITATION

NATA

Report Number:	P242782-1
Issue Number:	1
Date Issued:	09/09/2024
Client:	GTS Consultancy Department
	13 Alstonvale Court , East Bendigo VIC 3550
Contact:	Shane Hampton
Project Number:	P242782
Project Name:	Proposed Sheds and Ponds
Project Location:	Larkins and Maxwells Road, Finley
Client Reference:	24C 0720
Work Request:	16124
Sample Number:	B24-16124F
Date Sampled:	20/08/2024
Dates Tested:	29/08/2024 - 06/09/2024
Sampling Method:	Sampled by Client
	The results apply to the sample as received
Sample Location:	BH14 (0.6-1.2m)
Material:	Refer to Borehole Logs

Particle Size	Distribution (A	S1289 3	8.6.1)			
Sieve	Passed %	Passin Limits	g	Retained %	Retair Limits	ned
19 mm	100			0		
2.36 mm	100			0		
1.18 mm	99			1		
0.6 mm	98			1		
0.425 mm	97			1		
0.3 mm	94			2		
0.15 mm	89			6		
0.075 mm	85			4		
Atterberg Lim	it (AS1289 3.1	1.2 & 3.2	.1 & 3.	3.1)	Min	Max
Sample Histo	ry		0	ven Dried		
Preparation Method		C	Dry Sieve			
Liquid Limit (%)			46			
Plastic Limit (%)			18			
Plasticity Index (%)			28			
Linear Shrink	age (AS1289	3.4.1)			Min	Max
Moisture Condition Determined By		AS	1289.3.1.2		_	
Linear Shrink	age (%)			11.5		
Cracking Cru	mbling Curling	1	Cracking & Curling			
Emerson Clas	ss Number of	a Soil (A	S 1289	3.8.1)	Min	Max
Emerson Class			5			
Soil Description		Refe	r to Borehole Logs			
Nature of Water			Potable			
Temperature of Water (^o C)			22.9			

Geotechnical Testing Services (Southern) Bendigo Soil and Concrete Testing Laboratory 13 Alstonvale Court East Bendigo VIC 3550 Phone:

Email: jamess@gts.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

A WORLD RECOGNISED ACCREDITATION

NATA

P242782-1		
1		
09/09/2024		
GTS Consultancy Department		
13 Alstonvale Court , East Bendigo VIC 3550		
Shane Hampton		
P242782		
Proposed Sheds and Ponds		
Larkins and Maxwells Road, Finley		
24C 0720		
16124		
B24-16124G		
20/08/2024		
29/08/2024 - 04/09/2024		
Sampled by Client		
The results apply to the sample as received		
BH15 (0.1-0.7m)		
Refer to Borehole Logs		

Particle Size	Distribution (A	S1289 3	3.6.1)			
Sieve	Passed %	Passir Limits	ng	Retained %	Retain Limits	ned
19 mm	100			0		
9.5 mm	100			0		
6.7 mm	100			0		
4.75 mm	100			0		
2.36 mm	99			0		
1.18 mm	98			1		
0.6 mm	97			2		
0.425 mm	95			2		
0.3 mm	93			2		
0.15 mm	86			6		
0.075 mm	82			4		
Atterberg Lim	it (AS1289 3.1	.2 & 3.2	2.1 & 3.	3.1)	Min	Max
Sample Histo	ry		0	ven Dried		
Preparation Method			Dry Sieve	1		
Liquid Limit (%)			53			
Plastic Limit (%)			21			
Plasticity Index (%)			32			
Linear Shrinkage (AS1289 3.4.1)				Min	Max	
Moisture Con	dition Determi	ned By	AS	1289.3.1.2		
Linear Shrink	age (%)		13.5			
Cracking Cru	mbling Curling		Cracking & Curling			
Emerson Clas	ss Number of a	a Soil (A	S 1289	9 3.8.1)	Min	Max
Emerson Clas	SS	`		4 *		
Soil Description		Refe	r to Borehole Logs			
Nature of Water		Potable				
Temperature of Water (^o C)			24.2			
* Mineral Present		l c	arbonate			

Geotechnical Testing Services (Southern) Bendigo Soil and Concrete Testing Laboratory 13 Alstonvale Court East Bendigo VIC 3550 Phone:

Email: jamess@gts.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

Approved S ACCREDITATION

NATA

Report Number:	P242782-1
Issue Number:	1
Date Issued:	09/09/2024
Client:	GTS Consultancy Department
	13 Alstonvale Court , East Bendigo VIC 3550
Contact:	Shane Hampton
Project Number:	P242782
Project Name:	Proposed Sheds and Ponds
Project Location:	Larkins and Maxwells Road, Finley
Client Reference:	24C 0720
Work Request:	16124
Sample Number:	B24-16124H
Date Sampled:	20/08/2024
Dates Tested:	29/08/2024 - 04/09/2024
Sampling Method:	Sampled by Client
	The results apply to the sample as received
Sample Location:	BH16 (2-2.5m)
Material:	Refer to Borehole Logs

Particle Size Distribution (AS1289 3.6.1)						
Sieve	Passed %	Passin Limits	g	Retained %	Retain Limits	ied
19 mm	100			0		
2.36 mm	100			0		
1.18 mm	99			1		
0.6 mm	98			1		
0.425 mm	98			0		
0.3 mm	92			6		
0.15 mm	46			46		
0.075 mm	32			13		
Atterberg Lim	it (AS1289 3.1	.2 & 3.2	2.1 & 3.3	3.1)	Min	Max
Sample History		0	ven Dried			
Preparation Method		D	Dry Sieve		_	
Liquid Limit (%)			54			
Plastic Limit (%)			20			
Plasticity Index (%)			34			
Linear Shrink	age (AS1289 3	3.4.1)			Min	Max
Moisture Condition Determined By		AS	1289.3.1.2			
Linear Shrink	age (%)			14.5		
Cracking Crui	mbling Curling			Cracking & C	Curling	
Emerson Class Number of a Soil (AS 1289 3.8.1) Min Ma			Max			
Emerson Clas	SS			5		
Soil Description		Refe	r to Borehole Logs			
Nature of Water			Potable]		
Temperature of Water (^o C)			24.2]		

Geotechnical Testing Services (Southern) Bendigo Soil and Concrete Testing Laboratory 13 Alstonvale Court East Bendigo VIC 3550 Phone:

Email: jamess@gts.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED ACCREDITATION

NATA

Triaxial Permeability Test Report

Report Number: Date Issued: Client:

Contact: Project Number: Project Name: Project Location: Date Sampled: Dates Tested: Sampling Method: Specification: Sample Identification: Sample Number: Location: Material Description: 11585-1 20/09/2024 Geotechnical Testing Services Pty Ltd 13 Alstonvale Court, East Bendigo, 3550 James Smith 11585 WR#16124 Bendigo 20/08/2024 9-19/09/2024 Sampled by client N/A B24-16124D TF/P/24/06282 B24-16124D

Pakenham Laboratory 47 National Avenue Pakenham VIC 3810 Phone: (03) 9769 5799 Email: pdiyawadana@terrafirmalabs.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory:

TAL

WORLD RECOGNISED

P Diyawadana

NATA Accredited Laboratory Number: 15357

Triaxial Permeability AS 1289 6.7.3-2016	
Permeant Used	NaCl (50000ppm)
Confining Pressure(kPa)	600
Head Pressure(kPa)	590
Bottom Pressure(kPa)	570
Mean Pressure(kPa)	20
Specimen Height(mm)	70
Specimen Diameter(mm)	63
Length to Height Ratio	1.11
Laboratory Density Ratio(%)	95
Laboratory Moisture Ratio(%)	100
Compactive Effort	Standard
Material Retained on the 37.5mm sieve (%)	0
Final Moisture Content (%)	23.5
Permeability(m/s)	1.E-10

silty CLAY, orange/brown

Triaxial Permeability Test Report

Report Number: Date Issued: Client:

Contact: Project Number: Project Name: Project Location: Date Sampled: Dates Tested: Sampling Method: Specification: Sample Identification: Sample Number: Location: Material Description: 11585-2 20/09/2024 Geotechnical Testing Services Pty Ltd 13 Alstonvale Court, East Bendigo, 3550 James Smith 11585 WR#16124 Bendigo 28/08/2024 10-18/09/2024 Sampled by client N/A B24-16124F TF/P/24/06283 B24-16124F

Pakenham Laboratory 47 National Avenue Pakenham VIC 3810 Phone: (03) 9769 5799 Email: pdiyawadana@terrafirmalabs.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory:

TAL

WORLD RECOGNISED

P Diyawadana

NATA Accredited Laboratory Number: 15357

Triaxial Permeability AS 1289 6.7.3-2016	
Permeant Used	NaCl (50000ppm)
Confining Pressure(kPa)	600
Head Pressure(kPa)	590
Bottom Pressure(kPa)	570
Mean Pressure(kPa)	20
Specimen Height(mm)	70
Specimen Diameter(mm)	63
Length to Height Ratio	1.11
Laboratory Density Ratio(%)	95
Laboratory Moisture Ratio(%)	97
Compactive Effort	Standard
Material Retained on the 37.5mm sieve (%)	0
Final Moisture Content (%)	24.8
Permeability(m/s)	6.E-10

silty CLAY, grey/brown

DESCRIPTIVE TERMS BOREHOLE/EXCAVATION LOG

Classification Symbol & Soil Name

Classification of material and its description is based on the Unified Classification System as referenced in AS1726 – 1993 Geotechnical Site Investigations, Appendix A. A summary of the more common terms is included within.

Particle Size Descriptive Terms

Name	Subdivision	Size
Boulders		>200mm
Cobbles		63 – 200mm
Gravel	Coarse	20 – 63mm
	Medium	6 – 20mm
	Fine	2.36 – 6mm
Sand	Coarse	0.6 – 2.36mm
	Medium	200 – 600 micron
	Fine	75 – 200 micron
Silt		2 – 75 micron
Clay		< 2 micron

Consistency of Cohesive Soils

Term	Undrained shear strength, s _u (kPa)	Field Guide
Very Soft (VS)	<12	A finger can be pushed well into the soil with little effort
Soft (S)	12 – 25	A finger can be pushed into the soil to about 25mm depth
Firm (F)	25 – 50	The soil can be indented about 5mm with the thumb
Stiff (St)	50 – 100	The surface of the soil can be indented with the thumb
Very Stiff (VSt)	100 – 200	The surface of the soil can be indented by thumb nail
Hard (H)	>200	The surface of the soil can be marked only with the thumbnail
Friable (F)	-	Crumbles or powders when scraped by thumbnail

Method

s	Auger Screwing	w	Washboring
D	Auger Drilling	N	Natural Exposure
R	Roller/tricone	E	Existing Excavation

Water

*	Not observed
\leq	Observed water level (date shown)

- Observed water inflow
- Observed water outflow
- R Refer to report for details

Structures, Additional Observations

PP	Pocket Penetrometer test (kPa)
DCP	Dynamic Cone Penetrometer test
	(blows/100mm)

Density of Granular Soils

Term	Density Index (%)
Very Loose (VL)	< 15
Loose (L)	15 – 35
Medium Dense (MD)	35 – 65
Dense (D)	65 - 85
Very Dense (VD)	> 85

Minor Components

Term	Field Guide	Proportion of Minor Component In:
Trace of	Presence just detectable by feel or eye	Coarse grained soils: <5% Fine grained soils: <15%
Some	Presence easily detectable by feel or eye	Coarse grained soils: 5-12% Fine grained soils: 15-30%

Moisture Condition

Dry (D)	Looks & feels dry. Cohesive soils are usually hard, powdery or friable. Granular soils run freely through the hand.
Moist (M)	Soil feels cool and darkened in colour. Cohesive

- soils can be moulded. Granular soils tend to cohere. Free water does not form.
- Wet (W) As for moist, but with free water forming on hands when remoulded.

Support

В	Blade/bucket	*	Nil
С	Coring	С	Casing
н	Hammer Drill	м	Mud/polymer

Notes, Samples, Tests

U63 Undisturbed sample, 63mm diameter

D Disturbed sample
 N* Standard Penetration Test, (*) Sample

Figure = results

Surface

	Known boundary
	Probably boundary
-?-?-?-?-?-	Possible boundary

SoilMate Lab Result Status Report

Date Printed 01-Nov-2024 21:38:28

Trading Name	P Middlebrook
Farm	STRATHDRUMMOND
Paddock	Tree Line
Contact	PETER MIDDLEBROOK

Barcode070298484Sample Date21 Oct 2024PaAdviserStacey DoolanAnalysis Date01 Nov 2024EvaluationPasture NSW Perennial Grass Legume 24 DSE PBI (70 - 140)

cm

Test Code

IP-E13 Depth From:

Depth To: cm

Nutrient	Result	Suf F	ficiency Range
рН (1:5 Н2О)	7.100	5	.5 - 8.5
pH (1:5 CaCl2)	6.400	4	.7 - 7.7
EC (1:5 H2O) dS/m	0.110		0 - 0.3
EC (se) (dS/m)	0.680) - 2.3
EC (se) (dS/m)	0.680) - 2.3
EC (se) (dS/m) (Cladj)	0.390) - 2.3
EC (se) (dS/m) (Cladj)	0.390) - 2.3
Chloride (1:5 H2O) mg/kg	#Error) - 100
Organic carbon (Walkley Black) %	1.870		2 - 20
Nitrate nitrogen (KCI) mg/kg	3.400	1	0 - 25
Ammonium nitrogen (KCI) mg/kg	3.100		0 - 5
Phosphorus (Colwell) mg/kg	210.000	3	30 - 50
Phosphorus Buffer Index (Colwell) (PBIc)	150.000	1	5 - 280
Phosphorus Environmental Risk Index	1.400	0	- 0.65
Potassium (Amm-Acet.) cmol+/kg	1.700		0.3 - 2
Potassium % of CEC	10.200		1 - 10
Sodium:Potassium Ratio	0.200		0 - 5
Sulfate-S (KCl40) mg/kg	3.900	1	0 - 50
Calcium (Amm-Acet) cmol+/kg	8.800	1	- 100
Calcium % of CEC	53.000	5	55 - 90
Magnesium (Amm-Acet.) cmol+/kg	5.800	0	.8 - 10
Magnesium % cations	34.900		0 - 25
Grass Tetany Risk Index (Soil)	0.120	0	- 0.07
Sodium (Amm-Acet.) cmol+/kg	0.310		0 - 0.8
Exch. sodium %	1.900		0 - 6
Electrochemical Stability Index	0.059	0.	.05 - 10
Aluminium (KCl) (prewash) cmol+/kg	#Error		0 - 0.3
Aluminium Saturation %	#Error		0 - 5
eCEC cmol+/kg	16.600) - 100
Copper (DTPA) mg/kg	2.100		0.3 - 5
Zinc (DTPA) mg/kg	2.900).5 - 5
Manganese (DTPA) mg/kg	22.000	2	2 - 200
Boron (hot CaCl2) (mg/kg)	1.200).5 - 8

BACK PADDO SOILMATE	SoilMate Lab Result Status Report Date Printed 01-Nov-2024 21:38:28				Trading Name Farm	P Middlebro STRATHDRU	ok IMMOND	
Barcode Adviser	070298484 Stacey Doolan		Sample Date Analysis Dat	e 21 C e 01 N	oct 2024 Jov 2024	Paddock Contact	Tree Line PETER MIDE	DLEBROOK
Evaluation	Pasture NSW Perennial Grass Legume 24 DSE PBI (70 - 140)							
Test Code	IP-E13	Depth From:	cm	Depth To:	cm Marginal	Sufficient	High	Excessive

BACK PADDOCK
SOILMATE

SoilMate Lab Result Status Report

Date Printed 01-Nov-2024 21:38:47

Trading Name	P Middlebrook				
Farm	STRATHDRUMMOND				
Paddock	Abbott La 1-7				
Contact	PETER MIDDLEBROOK				

Barcode070298485Sample Date21 Oct 2024PaddockAdviserStacey DoolanAnalysis Date01 Nov 2024ContactEvaluationPasture NSW Perennial Grass Legume 24 DSE PBI (70 - 140)

cm

Test Code

IP-E13 Depth From:

Depth To: cm

Nutrient	Result	Sufficiency Range
рН (1:5 Н2О)	6.100	5.5 - 8.5
pH (1:5 CaCl2)	5.100	4.7 - 7.7
EC (1:5 H2O) dS/m	0.040	0 - 0.3
EC (se) (dS/m)	0.250	0 - 2.3
EC (se) (dS/m)	0.250	0 - 2.3
EC (se) (dS/m) (Cladj)	0.180	0 - 2.3
EC (se) (dS/m) (Cladj)	0.180	0 - 2.3
Chloride (1:5 H2O) mg/kg	#Error	0 - 100
Organic carbon (Walkley Black) %	2.380	2 - 20
Nitrate nitrogen (KCI) mg/kg	2.700	10 - 25
Ammonium nitrogen (KCI) mg/kg	5.500	0 - 5
Phosphorus (Colwell) mg/kg	170.000	30 - 50
Phosphorus Buffer Index (Colwell) (PBIc)	140.000	15 - 280
Phosphorus Environmental Risk Index	1.200	0 - 0.65
Potassium (Amm-Acet.) cmol+/kg	0.700	0.3 - 2
Potassium % of CEC	7.400	1 - 10
Sodium:Potassium Ratio	0.400	0 - 5
Sulfate-S (KCl40) mg/kg	3.700	10 - 50
Calcium (Amm-Acet) cmol+/kg	5.800	1 - 100
Calcium % of CEC	61.200	55 - 90
Magnesium (Amm-Acet.) cmol+/kg	2.600	0.8 - 10
Magnesium % cations	27.500	0 - 25
Grass Tetany Risk Index (Soil)	0.080	0 - 0.07
Sodium (Amm-Acet.) cmol+/kg	0.270	0 - 0.8
Exch. sodium %	2.900	0 - 6
Electrochemical Stability Index	0.014	0.05 - 10
Aluminium (KCl) (prewash) cmol+/kg	#Error	0 - 0.3
Aluminium Saturation %	1.100	0 - 5
eCEC cmol+/kg	9.500	0 - 100
Copper (DTPA) mg/kg	2.900	0.3 - 5
Zinc (DTPA) mg/kg	5.300	0.5 - 5
Manganese (DTPA) mg/kg	29.000	2 - 200
Boron (hot CaCl2) (mg/kg)	0.770	0.5 - 8

SoilMate Lab Result Status Report						Trading Name	P Middlebrook				
Date Printed 01-Nov-2024 21:38:47						Farm	STRATHDRUMMOND				
Barcode	070298485		Sample Date	e 21	21 Oct 2024		Paddock	Abbott La 1-7			
Adviser	Stacey Doolan		Analysis Date		01 Nov 2024		Contact	PETER MIDDLEBROOK			
Evaluation	Pasture NSW Perennial Grass Legume 24 DSE PBI (70 - 140)										
Test Code	IP-E13	Depth From:	cm	Depth To): ow	cm Marginal	Sufficient	High	Excessive		

BACK PADDOCK
SOILMATE

SoilMate Lab Result Status Report

Date Printed 01-Nov-2024 21:39:07

Trading Name	P Middlebrook
Farm	STRATHDRUMMOND
Paddock	ABELARD ST 4 TO 9
Contact	PETER MIDDLEBROOK

 Barcode
 070298486
 Sample Date
 21 Oct 2024

 Adviser
 Stacey Doolan
 Analysis Date
 01 Nov 2024

 Evaluation
 Pasture NSW Perennial Grass Legume 24 DSE PBI (70 - 140)

cm

Test Code

IP-E13 Depth From:

Depth To: cm

Nutrient	Result	Sufficiency Range
pH (1:5 H2O)	6.400	5.5 - 8.5
pH (1:5 CaCl2)	5.700	4.7 - 7.7
EC (1:5 H2O) dS/m	0.070	0 - 0.3
EC (se) (dS/m)	0.430	0 - 2.3
EC (se) (dS/m)	0.430	0 - 2.3
EC (se) (dS/m) (Cladj)	0.280	0 - 2.3
EC (se) (dS/m) (Cladj)	0.280	0 - 2.3
Chloride (1:5 H2O) mg/kg	12.000	0 - 100
Organic carbon (Walkley Black) %	2.650	2 - 20
Nitrate nitrogen (KCI) mg/kg	4.900	10 - 25
Ammonium nitrogen (KCI) mg/kg	5.200	0 - 5
Phosphorus (Colwell) mg/kg	220.000	30 - 50
Phosphorus Buffer Index (Colwell) (PBIc)	140.000	15 - 280
Phosphorus Environmental Risk Index	1.600	0 - 0.65
Potassium (Amm-Acet.) cmol+/kg	1.600	0.3 - 2
Potassium % of CEC	10.100	1 - 10
Sodium:Potassium Ratio	0.200	0 - 5
Sulfate-S (KCl40) mg/kg	5.700	10 - 50
Calcium (Amm-Acet) cmol+/kg	8.800	1 - 100
Calcium % of CEC	55.800	55 - 90
Magnesium (Amm-Acet.) cmol+/kg	5.100	0.8 - 10
Magnesium % cations	32.300	0 - 25
Grass Tetany Risk Index (Soil)	0.120	0 - 0.07
Sodium (Amm-Acet.) cmol+/kg	0.270	0 - 0.8
Exch. sodium %	1.700	0 - 6
Electrochemical Stability Index	0.041	0.05 - 10
Aluminium (KCI) (prewash) cmol+/kg	#Error	0 - 0.3
Aluminium Saturation %	#Error	0 - 5
eCEC cmol+/kg	15.800	0 - 100
Copper (DTPA) mg/kg	3.000	0.3 - 5
Zinc (DTPA) mg/kg	5.400	0.5 - 5
Manganese (DTPA) mg/kg	27.000	2 - 200
Boron (hot CaCl2) (mg/kg)	1.100	0.5 - 8

BACK PADDO SOILMATE	SoilMat	e Lab Result S ed 01-Nov-2024 2 ⁻	tatus Repo 1:39:07	rt			Trading Name Farm	P Middlebro STRATHDRU	ok IMMOND
Barcode Adviser	070298486 Stacey Doolan		Sample Date Analysis Dat	e 21 e 01	l Oct l No	t 2024 v 2024	Paddock Contact	ABELARD ST PETER MIDI	- 4 TO 9 Dlebrook
Evaluation	on Pasture NSW Perennial Grass Legume 24 DSE PBI (70 - 140)								
Test Code	IP-E13	Depth From:	cm	Depth To	:: ow	cm Marginal	Sufficient	High	Excessive

SoilMate Lab Result Status Report

Date Printed 01-Nov-2024 21:39:25

Trading Name	P Middlebrook
Farm	STRATHDRUMMOND
Paddock	Bernies Pdk 1-10
Contact	PETER MIDDLEBROOK

 Barcode
 070298487
 Sample Date
 21 Oct 2024

 Adviser
 Stacey Doolan
 Analysis Date
 01 Nov 2024

 Evaluation
 Pasture NSW Perennial Grass Legume 24 DSE PBI (70 - 140)

cm

Test Code

IP-E13 Depth From:

Depth To: cm

Nutrient	Result	Sufficience Range	су
pH (1:5 H2O)	6.900	5.5 - 8.5	5
pH (1:5 CaCl2)	6.100	4.7 - 7.7	7
EC (1:5 H2O) dS/m	0.040	0 - 0.3	
EC (se) (dS/m)	0.250	0 - 2.3	
EC (se) (dS/m)	0.250	0 - 2.3	_
EC (se) (dS/m) (Cladj)	0.180	0 - 2.3	
EC (se) (dS/m) (Cladj)	0.180	0 - 2.3	
Chloride (1:5 H2O) mg/kg	#Error	0 - 100	
Organic carbon (Walkley Black) %	1.570	2 - 20	
Nitrate nitrogen (KCI) mg/kg	3.000	10 - 25	
Ammonium nitrogen (KCI) mg/kg	3.200	0 - 5	
Phosphorus (Colwell) mg/kg	170.000	30 - 50	
Phosphorus Buffer Index (Colwell) (PBIc)	120.000	15 - 280)
Phosphorus Environmental Risk Index	1.400	0 - 0.65	;
Potassium (Amm-Acet.) cmol+/kg	1.600	0.3 - 2	
Potassium % of CEC	10.900	1 - 10	
Sodium:Potassium Ratio	0.100	0 - 5	
Sulfate-S (KCl40) mg/kg	2.200	10 - 50	
Calcium (Amm-Acet) cmol+/kg	8.200	1 - 100	
Calcium % of CEC	56.000	55 - 90	
Magnesium (Amm-Acet.) cmol+/kg	4.700	0.8 - 10)
Magnesium % cations	32.100	0 - 25	
Grass Tetany Risk Index (Soil)	0.120	0 - 0.07	,
Sodium (Amm-Acet.) cmol+/kg	0.150	0 - 0.8	
Exch. sodium %	1.000	0 - 6	
Electrochemical Stability Index	0.039	0.05 - 10	0
Aluminium (KCl) (prewash) cmol+/kg	#Error	0 - 0.3	
Aluminium Saturation %	#Error	0 - 5	
eCEC cmol+/kg	14.600	0 - 100	
Copper (DTPA) mg/kg	1.600	0.3 - 5	
Zinc (DTPA) mg/kg	1.700	0.5 - 5	
Manganese (DTPA) mg/kg	12.000	2 - 200	
Boron (hot CaCl2) (mg/kg)	1.100	0.5 - 8	

BACK PADDO SOILMATE	SoilMat	ed 01-Nov-2024 21	tatus Repo 1:39:25	rt			Trading Name Farm	P Middlebro STRATHDRU	ok MMOND
Barcode Adviser	070298487 Stacey Doolan		Sample Date Analysis Dat	e (21 Oct 01 No	t 2024 v 2024	Paddock Contact	Bernies Pdk PETER MIDI	1-10 Dlebrook
Evaluation	Pasture NSW P	Perennial Grass Legu	ume 24 DSE PE	31 (70 - 14	40)				
Test Code	IP-E13	Depth From:	cm	Depth T	'o: Low	cm Marginal	Sufficient	High	Excessive

DATE: 2024-11-01 09:39 PM ADVISER NAME: Stacey Doolan PHONE:

Magnesium % cations

EC (se) (dS/m) (Cladj)

Calcium:magnesium ratio

Electrochemical Stability Index

EC (se) (dS/m)

Exch. sodium %

MOBILE: 0447 960 746

EMAIL: stacey.doolan@nutrien.com.

 SAMPLING DATE:
 21/10/2024

 RECEIVED DATE:
 25/10/2024

 ANALYSIS DATE:
 1/11/2024

LABORATORY: IPL

ANALYSIS	LABORATORY RESULT
Nitrate nitrogen (KCI) mg/kg	2.7
Soil Texture	Medium Clay
Phosphorus Environmental Risk Index	1.2
Boron (hot CaCl2) (mg/kg)	0.77
pH (1:5 CaCl2)	5.1
Sodium (Amm-Acet.) cmol+/kg	0.27
EC (1:5 H2O) dS/m	0.04
Aluminium Saturation %	1.1
Iron (DTPA) mg/kg	330
Sodium:Potassium Ratio	0.4
Calcium (Amm-Acet) cmol+/kg	5.8
Zinc (DTPA) mg/kg	5.3
Calcium % of CEC	61.2
Potassium (Amm-Acet.) cmol+/kg	0.70
Copper (DTPA) mg/kg	2.9
Sulfate-S (KCl40) mg/kg	3.7
Soil Colour	Brown
Potassium % of CEC	7.4
Chloride (1:5 H2O) mg/kg	<10
Ammonium nitrogen (KCI) mg/kg	5.5
Organic carbon (Walkley Black) %	2.38
Magnesium (Amm-Acet.) cmol+/kg	2.6
Manganese (DTPA) mg/kg	29
pH (1:5 H2O)	6.1
Calcium:Magnesium Ratio (cmol+/kg)	2.2
Aluminium (KCI) (prewash) cmol+/kg	<0.10
Phosphorus (Colwell) mg/kg	170
Grass Tetany Risk Index (Soil)	0.08
CALCULATED	CALCULATED RESULT
Phosphorus Buffer Index (Colwell) (PBIc)	140
eCEC cmol+/kg	9.5

27.5

0.25

2.9

0.014

0.18

2.2

Phosphorus Buffer Index (Colwell) (PBIc)

DATE:	2024-11-01 09:38 PM		
ADVISER NAME:	Stacey Doolan		
PHONE:		SAMPLING DATE:	21/10/2024
MOBILE:	0447 960 746	RECEIVED DATE:	25/10/2024
EMAIL:	stacey.doolan@nutrien.com.	ANALYSIS DATE:	1/11/2024

LABORATORY: IPL

ANALYSIS	LABORATORY RESULT
Sodium (Amm-Acet.) cmol+/kg	0.31
Sodium:Potassium Ratio	0.2
Magnesium (Amm-Acet.) cmol+/kg	5.8
Zinc (DTPA) ma/kg	2.9
Sulfate-S (KCl40) mg/kg	3.9
Calcium:Magnesium Ratio (cmol+/kg)	1.5
Potassium (Amm-Acet.) cmol+/kg	1.7
Iron (DTPA) mg/kg	120
Soil Colour	Brown
Potassium % of CEC	10.2
Calcium (Amm-Acet) cmol+/kg	8.8
Copper (DTPA) mg/kg	2.1
Aluminium Saturation %	<1
Manganese (DTPA) mg/kg	22
Calcium % of CEC	53
Boron (hot CaCl2) (mg/kg)	1.2
pH (1:5 H2O)	7.1
Chloride (1:5 H2O) mg/kg	<10
Nitrate nitrogen (KCI) mg/kg	3.4
pH (1:5 CaCl2)	6.4
Aluminium (KCI) (prewash) cmol+/kg	<0.10
EC (1:5 H2O) dS/m	0.11
Soil Texture	Medium Clay
Grass Tetany Risk Index (Soil)	0.12
Phosphorus (Colwell) mg/kg	210
Ammonium nitrogen (KCI) mg/kg	3.1
Organic carbon (Walkley Black) %	1.87
Phosphorus Environmental Risk Index	1.4
CALCULATED	CALCULATED RESULT
EC (se) (dS/m)	0.68
Calcium:magnesium ratio	1.5
EC (se) (dS/m) (Cladj)	0.39
Exch. sodium %	1.9
eCEC cmol+/kg	16.6
Magnesium % cations	34.9
Electrochemical Stability Index	0.059

150

Calcium:magnesium ratio

DATE:	2024-11-01 09:39 PM	
ADVISER NAME:	Stacey Doolan	
PHONE:		SAMPLING DA
MOBILE:	0447 960 746	RECEIVED DA
EMAIL:	stacey.doolan@nutrien.com.	ANALYSIS DA

SAMPLING DATE: 21/10/2024 RECEIVED DATE: 25/10/2024 ANALYSIS DATE: 1/11/2024

LABORATORY: IPL

ANALYSIS	LABORATORY RESULT
Boron (hot CaCl2) (mg/kg)	1.1
pH (1:5 H2O)	6.4
Magnesium (Amm-Acet.) cmol+/kg	5.1
Manganese (DTPA) mg/kg	27
Sulfate-S (KCl40) mg/kg	5.7
Calcium:Magnesium Ratio (cmol+/kg)	1.7
Phosphorus (Colwell) mg/kg	220
Ammonium nitrogen (KCI) mg/kg	5.2
Organic carbon (Walkley Black) %	2.65
Phosphorus Environmental Risk Index	1.6
Chloride (1:5 H2O) mg/kg	12
Nitrate nitrogen (KCI) mg/kg	4.9
pH (1:5 CaCl2)	5.7
Calcium (Amm-Acet) cmol+/kg	8.8
Copper (DTPA) mg/kg	3.0
Aluminium Saturation %	<1
Zinc (DTPA) mg/kg	5.4
Calcium % of CEC	55.8
Aluminium (KCI) (prewash) cmol+/kg	<0.10
EC (1:5 H2O) dS/m	0.07
Soil Texture	Medium Clay
Grass Tetany Risk Index (Soil)	0.12
Potassium (Amm-Acet.) cmol+/kg	1.6
Iron (DTPA) mg/kg	170
Soil Colour	Brown
Potassium % of CEC	10.1
Sodium (Amm-Acet.) cmol+/kg	0.27
Sodium:Potassium Ratio	0.2
CALCULATED	CALCULATED RESULT
eCEC cmol+/kg	15.8
Magnesium % cations	32.3
EC (se) (dS/m) (Cladj)	0.28
Electrochemical Stability Index	0.041
Phosphorus Buffer Index (Colwell) (PBIc)	140
Exch. sodium %	1.7
EC (se) (dS/m)	0.43

1.7

Calcium:magnesium ratio

DATE:	2024-11-01 09:39 PM
ADVISER NAME:	Stacey Doolan
PHONE:	
MOBILE:	0447 960 746
EMAIL:	stacey.doolan@nutrien.com.

SAMPLING DATE: 21/10/2024 RECEIVED DATE: 25/10/2024 ANALYSIS DATE: 1/11/2024

LABORATORY: IPL

ANALYSIS	LABORATORY RESULT
Boron (hot CaCl2) (mg/kg)	1.1
pH (1:5 H2O)	6.9
Phosphorus (Colwell) mg/kg	170
Ammonium nitrogen (KCI) mg/kg	3.2
Organic carbon (Walkley Black) %	1.57
Phosphorus Environmental Risk Index	1.4
Magnesium (Amm-Acet.) cmol+/kg	4.7
Zinc (DTPA) mg/kg	1.7
Sulfate-S (KCl40) mg/kg	2.2
Calcium:Magnesium Ratio (cmol+/kg)	1.7
Potassium (Amm-Acet.) cmol+/kg	1.6
Manganese (DTPA) mg/kg	12
Soil Colour	Brown
Potassium % of CEC	10.9
Chloride (1:5 H2O) mg/kg	<10
Nitrate nitrogen (KCI) mg/kg	3.0
pH (1:5 CaCl2)	6.1
Aluminium (KCI) (prewash) cmol+/kg	<0.10
EC (1:5 H2O) dS/m	0.04
Soil Texture	Medium Clay
Grass Tetany Risk Index (Soil)	0.12
Sodium (Amm-Acet.) cmol+/kg	0.15
Sodium:Potassium Ratio	0.1
Calcium (Amm-Acet) cmol+/kg	8.2
Copper (DTPA) mg/kg	1.6
Aluminium Saturation %	<1
Iron (DTPA) mg/kg	80
Calcium % of CEC	56
CALCULATED	CALCULATED RESULT
eCEC cmol+/kg	14.6
Magnesium % cations	32.1
EC (se) (dS/m) (Cladj)	0.18
Exch. sodium %	1
Electrochemical Stability Index	0.039
Phosphorus Buffer Index (Colwell) (PBIc)	120
EC (se) (dS/m)	0.25

1.7